【題目】已知O為直線(xiàn)AB上一點(diǎn),∠COE是直角,OF平分∠AOE.
(1)如圖①,若∠COF=34°,則∠BOE=________;若∠COF=n°,則∠BOE=________;∠BOE與∠COF的數(shù)量關(guān)系為_(kāi)_______________.
(2)當(dāng)射線(xiàn)OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)到如圖②的位置時(shí),(1)中∠BOE與∠COF的數(shù)量關(guān)系是否仍然成立?請(qǐng)說(shuō)明理由.
(3)在圖③中,若∠COF=65°,在∠BOE的內(nèi)部是否存在一條射線(xiàn)OD,使得2∠BOD與∠AOF的和等于∠BOE與∠BOD的差的一半?若存在,請(qǐng)求出∠BOD的度數(shù);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)68°;2n°;∠BOE=2∠COF(2)仍然成立(3)存在
【解析】
試題(1)根據(jù)角平分線(xiàn)的性質(zhì)結(jié)合直角、平角的定義即可得到結(jié)果;
(2)設(shè),根據(jù)角平分線(xiàn)的性質(zhì)可得,即可得到,再由可得,從而得到結(jié)論;
(3)由∠COF=65°可得∠BOE=2∠COF=130°,即可得到∠AOF的度數(shù),又2∠BOD+∠AOF=(∠BOE-∠BOD),即可求得結(jié)果.
(1)若∠COF=34°,則∠BOE=68°;若∠COF=m°,則∠BOE=°;所以∠BOE=2∠COF;
(2)成立.理由如下:
設(shè)
∵OF 平分∠AOE
∴
∴
∵
∴
∴∠BOE=2∠COF;
(3)存在,∠BOD=16°.理由如下:
∵∠COF=65°
∴∠BOE=2∠COF=130°
∴∠AOF=(180°-∠BOE)=25°
又2∠BOD+∠AOF=(∠BOE-∠BOD)
∴2∠BOD+25°=(130°-∠BOD)
∴∠BOD=16°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙P的半徑為2,圓心P在拋物線(xiàn)y=x2﹣1上運(yùn)動(dòng),當(dāng)⊙P與x軸相切時(shí),圓心P的坐標(biāo)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三個(gè)頂點(diǎn)A,B,C的坐標(biāo)分別為A(4,0),B(0,-3),C(2,-4).
(1)在如圖的平面直角坐標(biāo)系中畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的△A'B'C',并分別寫(xiě)出A′,B′,C′的坐標(biāo);
(2)將△ABC向左平移5個(gè)單位,請(qǐng)畫(huà)出平移后的△A″B″C″,并寫(xiě)出△A″B″C″各個(gè)頂點(diǎn)的坐標(biāo);
(3)求出(2)中的△ABC在平移過(guò)程中所掃過(guò)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,DE//AC,交BC的延長(zhǎng)線(xiàn)于點(diǎn)E,EF⊥AB于點(diǎn)F.求證:(1)BC=CE;(2)AD=CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,O是AC上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線(xiàn)MN∥BC,設(shè)MN交∠BCA的角平分線(xiàn)于點(diǎn)E,交∠BCA的外角平分線(xiàn)于點(diǎn)F.
(1)求證:EO=FO;(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論;
(3)若AC邊上存在點(diǎn)O,使四邊形AECF是正方形且,求∠B的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD是△ABC的角平分線(xiàn),⊙O經(jīng)過(guò)A、B、D三點(diǎn),過(guò)點(diǎn)B作BE∥AD,交⊙O于點(diǎn)E,連接ED.
(1)求證:ED∥AC;
(2)連接AE,試證明:ABCD=AEAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,過(guò)點(diǎn)D作EF∥BC,分別交AB、AC于E、F兩點(diǎn),則圖中共有__________個(gè)等腰三角形;EF與BE、CF之間的數(shù)量關(guān)系是__________,△AEF的周長(zhǎng)是__________;
(2)如圖2,若將(1)中“△ABC中,AB=AC=10”該為“若△ABC為不等邊三角形,AB=8,AC=10”其余條件不變,則圖中共有__________個(gè)等腰三角形;EF與BE、CF之間的數(shù)量關(guān)系是什么?證明你的結(jié)論,并求出△AEF的周長(zhǎng);
(3)已知:如圖3,D在△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,過(guò)點(diǎn)D作DE∥BC,分別交AB、AC于E、F兩點(diǎn),則EF與BE、CF之間又有何數(shù)量關(guān)系呢?直接寫(xiě)出結(jié)論不證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓的內(nèi)接等腰三角形ABC,圓的半徑為10,如果底邊BC的長(zhǎng)為16,那么△ABC的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地下車(chē)庫(kù)出口處安裝了“兩段式欄桿”,點(diǎn)A是欄桿轉(zhuǎn)動(dòng)的支點(diǎn),點(diǎn)E是欄桿兩段的聯(lián)結(jié)點(diǎn).當(dāng)車(chē)輛經(jīng)過(guò)時(shí),欄桿AEF最多只能升起到如圖所示的位置,其中AB⊥BC,EF∥BC,∠AEF=135°,AB=AE=1.3米,那么適合該地下車(chē)庫(kù)的車(chē)輛限高標(biāo)志牌為(欄桿寬度忽略不計(jì).參考數(shù)據(jù):≈1.4)( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com