【題目】圓的內接等腰三角形ABC,圓的半徑為10,如果底邊BC的長為16,那么△ABC的面積為

【答案】32或128
【解析】解:作AD⊥BC于D,
∵AB=AC,
∴BD=CD=BC=8,
∴AD垂直平分BC,
∴圓心O在AD上,連結OB,
在Rt△OBC中,∵BD=8,OB=10,
∴OD==6,
當△ABC為銳角三角形時,AD=OA+OD=10+6=16,此時S△ABC=×16×16=128;
當△ABC為鈍角三角形時,AD=OA﹣OD=10﹣6=4,此時S△ABC=×16×4=32.
所以答案是:32或128.

【考點精析】根據(jù)題目的已知條件,利用三角形的外接圓與外心的相關知識可以得到問題的答案,需要掌握過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】學校為了獎勵初三優(yōu)秀畢業(yè)生,計劃購買一批平板電腦和一批學習機經(jīng)投標,購買1臺平板電腦3 000購買1臺學習機800.

(1)學校根據(jù)實際情況,決定購買平板電腦和學習機共100要求購買的總費用不超過168 000,則購買平板電腦最多多少臺?

(2)(1)的條件下,購買學習機的臺數(shù)不超過平板電腦臺數(shù)的1.7.請問有哪幾種購買方案?哪種方案最省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知O為直線AB上一點,∠COE是直角,OF平分∠AOE.

(1)如圖①,若∠COF=34°,則∠BOE=________;若∠COF=n°,則∠BOE=________;∠BOE與∠COF的數(shù)量關系為________________.

(2)當射線OE繞點O逆時針旋轉到如圖②的位置時,(1)中∠BOE與∠COF的數(shù)量關系是否仍然成立?請說明理由.

(3)在圖③中,若∠COF=65°,在∠BOE的內部是否存在一條射線OD,使得2∠BOD與∠AOF的和等于∠BOE與∠BOD的差的一半?若存在,請求出∠BOD的度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段AB,按下列要求完成畫圖和計算:

(1)延長線段AB到點C,使BC=2AB,取AC中點D;

(2)在(1)的條件下,如果AB=4,求線段BD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABCD中,BE、CE分別平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.求ABCD的周長和面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 Rt△ABC 中,∠ABC=90°AB=BC=,將△ABC 繞點 C 逆時針旋轉 60°,得到△MNC, 連接 BM,則 BM 的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小李按市場價格30元/千克收購了一批海鮮1000千克存放在冷庫里,據(jù)預測,海鮮的市場價格將每天每千克上漲1元.冷凍存放這批海鮮每天需要支出各種費用合計310元,而且這些海鮮在冷庫中最多存放160天,同時平均每天有3千克的海鮮變質.
(1)設x天后每千克該海鮮的市場價格為y元,試寫出y與x之間的函數(shù)關系式;
(2)若存放x天后,將這批海鮮一次性出售.設這批海鮮的銷售總額為P元,試寫出P與x之間的函數(shù)關系式;
(3)小李將這批海鮮存放多少天后出售可獲得最大利潤,最大利潤是多少元?(利潤W=銷售總額﹣收購成本﹣各種費用)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a,b,c滿足

(1)求a,b,c的值;

(2)試問以a,b,c為邊能否構成三角形?若能構成三角形,求出三角形的周長;若不能構成三角形,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018“體彩杯”重慶開州漢豐湖半程馬拉松賽開跑前一周,某校七年級數(shù)學研究學習小組在某十字路口隨機調查部分市民對“半馬拉松賽”的了解情況,統(tǒng)計結果后繪制了如圖的兩副不完整的統(tǒng)計圖,請結合圖中相關數(shù)據(jù)回答下列問題:

A

50<n≤60

B

60<n≤70

C

70<n≤80

D

80<n≤90

E

90<n≤100

(1)本次調查的總人數(shù)為   人,在扇形統(tǒng)計圖中“C”所在扇形的圓心角的度數(shù)為   度;

(2)補全頻數(shù)分布圖;

(3)若在這一周里,該路口共有7000人通過,請估計得分超過80的大約有多少人?

查看答案和解析>>

同步練習冊答案