【題目】如圖,已知拋物線y=ax2﹣x+c的對稱軸為直線x=1,與x軸的一個交點為A(﹣1,0),頂點為B.點C(5,m)在拋物線上,直線BC交x軸于點E.
(1)求拋物線的表達式及點E的坐標;
(2)聯(lián)結(jié)AB,求∠B的正切值;
(3)點G為線段AC上一點,過點G作CB的垂線交x軸于點M(位于點E右側(cè)),當△CGM與△ABE相似時,求點M的坐標.
【答案】(1),E(2,0);(2)3;(3) M點的坐標為(5,0)或(7,0)
【解析】
(1)由對稱軸可求得a的值,再把A點坐標代入可求得c的值,則可求得拋物線表達式,則可求出B、C的坐標,由待定系數(shù)法可求得直線BC的解析式,可求出E的坐標
(2)由A、B、C三點的坐標可求得AB、AC和BC的長,可判定△ABC是以BC為斜邊的直角三角形,利用三角形的定義可求出答案
(3)設M(x,0),當∠GCM=∠BAE時,可知△AMC為等腰直角三角形,可求的M點的坐標;當∠CMG=∠BAE時,可證得△MEC∽△MCA,利用相似三角形的性質(zhì)可求得x的值,可求得M點的坐標
(1)∵拋物線對稱軸為x=1,
∴,解得,
把A點坐標代入可得,解得,
∴拋物線表達式為,
∵,
∴B(1,﹣2),
把C(5,m)代入拋物線解析式可得,
∴C(5,6),
設直線BC解析式為y=kx+b,
把B、C坐標代入可得,解得,
∴直線BC解析式為y=2x﹣4,
令y=2可得2x﹣4=0,解得x=2,
∴E(2,0);
(2)∵A(﹣1,0),B(1,﹣2),C(5,6),
∴,
∴AB2+AC2=8+72=80=BC2,
∴△ABC是以BC為斜邊的直角三角形,
∴;
(3)∵A(﹣1,0),B(1,﹣2),
∴∠CAE=∠BAE=45°,
∵GM⊥BC,
∴∠CGM+∠GCB=∠GCB+∠ABC=90°,
∴∠CGM=∠ABC,
∴當△CGM與△ABE相似時有兩種情況,
設M(x,0),則C(x,2x﹣4),
①當∠GCM=∠BAE=45°時,則∠AMC=90°,
∴MC=AM,即2x﹣4=x+1,解得x=5,
∴M(5,0);
②當∠GMC=∠BAE=∠MAC=45°時,
∵∠MEC=∠AEB=∠MCG,
∴△MEC∽△MCA,
∴,即,
∴MC2=(x﹣2)(x+1),
∵C(5,6),
∴MC2=(x﹣5)2+62=x2﹣10x+61,
∴(x﹣2)(x+1)=x2﹣10x+61,解得x=7,
∴M(7,0);
綜上可知M點的坐標為(5,0)或(7,0).
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,的余切值為2,,點D是線段上的一動點(點D不與點A、B重合),以點D為頂點的正方形的另兩個頂點E、F都在射線上,且點F在點E的右側(cè),聯(lián)結(jié),并延長,交射線于點P.
(1)點D在運動時,下列的線段和角中,________是始終保持不變的量(填序號);
①;②;③;④;⑤;⑥;
(2)設正方形的邊長為x,線段的長為y,求y與x之間的函數(shù)關系式,并寫出定義域;
(3)如果與相似,但面積不相等,求此時正方形的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,梯形ABCD,DC∥AB,對角線AC平分∠BCD,點E在邊CB的延長線上,EA⊥AC,垂足為點A.
(1)求證:B是EC的中點;
(2)分別延長CD、EA相交于點F,若AC2=DCEC,求證:AD:AF=AC:FC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC 中,AB=AC,D、E是斜邊BC上兩點,且∠DAE=45°,將△ADC繞點A順時針旋轉(zhuǎn)90°后,得到△AFB.設BE=a,DC=b,那么AB=_____.(用含a、b的式子表示AB)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線與x軸、y軸分別交于A、B兩點,設O為坐標原點.
(1)求∠ABO的正切值;
(2)如果點A向左平移12個單位到點C,直線l過點C且與直線平行,求直線l的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某足球特色學校在商場購買甲、乙兩種品牌的足球.已知乙種足球比甲種足球每只貴20元,該校分別花費2000元、1400元購買甲、乙兩種足球,這樣購得甲種足球的數(shù)量是購得乙種足球數(shù)量的2倍,求甲、乙兩種足球的單價各是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點D、E分別在邊BC、AC上,且CD=CE,聯(lián)結(jié)DE并延長至點F,使EF=AE,聯(lián)結(jié)AF,CF,聯(lián)結(jié)BE并延長交CF于點G.
(1)求證:BC=DF;
(2)若BD=2DC,求證:GF=2EG;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學完二元一次方程組的應用之后,老師寫出了一個方程組如下:,要求把這個方程組賦予實際情境.
小軍說出了一個情境:學校有兩個課外小組,書法組和美術組,其中書法組的人數(shù)的二倍比美術組多5人,書法組平均每人完成了4幅書法作品,美術組平均每人完成了3幅美術作品,兩個小組共完成了40幅作品,問書法組和美術組各有多少人?
小明通過驗證后發(fā)現(xiàn)小軍賦予的情境有問題,請找出問題在哪?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,對角線AC、BD交于點O,∠BAC的平分線交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,連接GE、GF,以下結(jié)論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正確的有( 。﹤.
A.2B.3C.4D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com