精英家教網(wǎng)如圖,E是矩形ABCD的邊CD上的一點(diǎn),BE交AC于點(diǎn)O,已知△OCE和△OBC的面積分別為2和8.
(1)求△OAB和四邊形AOED的面積;
(2)若BE⊥AC,求BE的長(zhǎng).
分析:(1)根據(jù)等高的三角形的面積之比等于邊之比,求出OE:OB=1:4,證△OCE∽△OAB,求出△AOB的面積,求出△ADC面積,得出平行四邊形的面積,即可請(qǐng)求出答案;
(2)設(shè)OE=x(x>0),OB=4x,BE=5x,求出CD,根據(jù)△OCE的面積求出x即可.
解答:解:(1)∵△COE與△OBC中邊EO,BO在同一直線上且此邊上的高相等,
∴根據(jù)等高的三角形的面積之比等于邊之比得出
S△OCE
S△OBC
=
OE
OB
=
2
8
=
1
4
,
在矩形ABCD中,
∵DC∥AB,
∴△OCE∽△OAB,
S △OCE
S△OAB
=(
OE
OB
)2=(
1
4
)2=
1
16

∴S△OAB=16S△OCB=16×2=32,
∴S△ABC=S△OBC+S△OAB=8+32=40,
∵AB=CD,BC=DA且∠ABC=∠ADC=90°,
∴S△ADC=S△ABC
∴S四邊形AOED=S△ADC-S△OCE,
=40-2=38,
答:△OAB和四邊形AOED的面積分別是:32,38.

(2)設(shè)OE=x(x>0),則
OB=4x,BE=5x,
在Rt△BCE中,
∵∠BCE=90°,CA⊥BE
∴△COE∽△BOC,
CO
OE
=
OB
CO

∴CO2=OE•OB=x•4x=4x2,
∴CO=2x,
∵S△OCE=
1
2
OE•OC=2
,
1
2
•x•2x=2

x=
2
(負(fù)值舍去),
BE=5x=5
2

答:BE的長(zhǎng)是5
2
點(diǎn)評(píng):本題主要考查對(duì)相似三角形的性質(zhì)和判定,三角形的面積,矩形的性質(zhì)等知識(shí)點(diǎn)的理解和掌握,能熟練地運(yùn)用性質(zhì)進(jìn)行計(jì)算是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

請(qǐng)看下面小明同學(xué)完成的一道證明題的思路:如圖1,已知△ABC中,AB=AC,CD⊥AB,垂足是D,P是BC邊上任意一點(diǎn),PE⊥AB,PF⊥AC,垂足分別是E、F.
求證:PE+PF=CD.
證明思路:
如圖2,過點(diǎn)P作PG∥AB交CD于G,則四邊形PGDE為矩形,PE=GD;又可證△PGC≌△CFP,則PF=CG;所以PE+PF=DG+GC=DC.若P是BC延長(zhǎng)線上任意一點(diǎn),其它條件不變,則PE、PF與CD有何關(guān)系?請(qǐng)你寫出結(jié)論并完成證明過程.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在一張△ABC紙片中,∠C=90°,∠B=60°,DE是中位線,現(xiàn)把紙片沿中位線DE剪開,計(jì)劃拼出以下四個(gè)圖形:①鄰邊不等的矩形;②等腰梯形;③有兩個(gè)角為銳角的菱形;④正方形.那么以上圖形一定能被拼成的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,矩形DEFG的邊EF在△ABC的邊BC上,頂點(diǎn)D、G分別在邊AB、AC上,AH為BC邊上的高,AH交DG于點(diǎn)P,已知AH=3,BC=5;
(1)設(shè)DG的長(zhǎng)為x,矩形DEFG面積為y,求y關(guān)于x的函數(shù)解析式及其定義域;
(2)根據(jù)(1)中所得y關(guān)于x的函數(shù)圖象,求當(dāng)矩形DEFG面積最大時(shí),DG的長(zhǎng)為多少?矩形DEFG面積是多少?精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:101網(wǎng)校同步練習(xí) 初二數(shù)學(xué) 華東師大(新課標(biāo)2001-3年初審) 華東師大(新課標(biāo)2001-3年初審) 題型:044

如圖,BO是Rt△ABC斜邊上的中線,延長(zhǎng)BO至點(diǎn)D,使DO=BO,連結(jié)AD,CD,則四邊形ABCD是矩形嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年廣東揭陽揭西張武幫中學(xué)九年級(jí)上質(zhì)檢考試數(shù)學(xué)試卷B(解析版) 題型:選擇題

如圖,AC.BD是矩形ABCD的對(duì)角線,過點(diǎn)D作DF∥AC交BC的延長(zhǎng)線于F,則圖中與△ABC全等的三角形共有(    。

A.4個(gè)  B.3個(gè)  C.2個(gè)    D.1個(gè)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案