【題目】某工程隊在我市實施棚戶區(qū)改造過程中承包了一項拆遷工程.原計劃每天拆遷,因為準備工作不足,第一天少拆遷了.從第二天開始,該工程隊加快了拆遷速度,第三天拆遷了.求:
該工程隊第一天拆遷的面積;
若該工程隊第二天、第三天每天的拆遷面積比前一天增加的百分數(shù)相同,求這個百分數(shù).
【答案】(1)該工程隊第一天拆遷的面積為1000m2;(2)該工程隊第二天、第三天每天的拆遷面積比前一天增長的百分數(shù)是20%.
【解析】
試題(1)第一天拆遷面積=原計劃的拆遷面積×(1-20%),把相關(guān)數(shù)值代入計算即可;
(2)等量關(guān)系為:第一天的拆遷面積×(1+百分數(shù))2=第3天的拆遷面積,把相關(guān)數(shù)值代入計算即可.
(1)該工程隊第一天拆遷面積是1250×(1-20%)=1000m2;
(2)設(shè)這個百分數(shù)是x,則
1000(1+x)2=1440,
(1+x)2=1.44,
1+x=±1.2,
x1=1.2-1=0.2=20%,x2=-1.2-1=-2.2.
經(jīng)檢驗:x2=-2.2不合題意,舍去,只取x1=20%,
答:這個百分數(shù)是20%.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B(3,0),與y軸交于點C,連接BC交拋物線的對稱軸于點E、D是拋物線的頂點.
(1)求此拋物線的解析式;
(2)求點C和點D的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有兩個不相等的實數(shù)根.
(1)求k的取值范圍;
(2)如果k是符合條件的最大整數(shù),且一元二次方程x2﹣4x+k=0與x2+mx﹣1=0有一個相同的根,求此時m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)課外興趣小組成員在研究下面三個有聯(lián)系的問題,請你幫助他們解決:
(1)如圖1,矩形ABCD中,AB=a,BC=b,點E,F分別在AB,DC上,點G,H分別在AD,BC上且EF⊥GH,求的值.
(2)如圖2,矩形ABCD中,AB=4,BC=3,將矩形對折,使得B、D重疊,折痕為EF,求EF的長.
(3)如圖3,四邊形ABCD中,∠ABC=90°,AB=AD=8,BC=CD=4,AM⊥DN,點M,N分別在邊BC,AB上,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊△ABC邊長為2,D為BC中點,連接AD.點O在線段AD上運動(不含端點A、D),以點O為圓心,長為半徑作圓,當(dāng)O與△ABC的邊有且只有兩個公共點時,DO的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標系,一條圓弧經(jīng)過網(wǎng)格點A、B、C,請在網(wǎng)格中進行下列操作:
(1)在圖中確定該圓弧所在圓的圓心D點的位置,并寫出點D點坐標為________.
(2)連接AD、CD,求⊙D的半徑及的長;
(3)有一點E(6,0),判斷點E與⊙D的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑OC=5cm,直線l⊥OC,垂足為H,且交⊙O于A、B兩點,AB=8cm,則l沿OC所在直線平移后與⊙O相切,則平移的距離是( )
A.2cm或8cmB.2cmC.1cm 或8cmD.1cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點,F是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com