【題目】下列函數(shù)中,當x>0時,y的值隨x的值增大而增大的是( )
A.y=﹣x2
B.y=x﹣1
C.y=﹣x+1
D.y=
【答案】B
【解析】解:A、y=﹣x2 , 當x>0時,y的值隨x的值增大而減小,所以A選項錯誤; B、y=x﹣1,x>0時,y的值隨x的值增大而增大,所以B選項正確;
C、y=﹣x+1,當x>0時,y的值隨x的值增大而減小,所以C選項錯誤;
D、y= ,當x>0時,y的值隨x的值增大而減小,所以D選項錯誤.
故選B.
【考點精析】通過靈活運用一次函數(shù)的性質和反比例函數(shù)的性質,掌握一般地,一次函數(shù)y=kx+b有下列性質:(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減;性質:當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內y值隨x值的增大而減; 當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內y值隨x值的增大而增大即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知線段AB=12cm,點C為線段AB上的一動點,點D,E分別是AC和BC中點.
(1)若點C恰好是AB的中點,則DE=_______cm;
(2)若AC=4cm,求DE的長;
(3)試說明無論AC取何值(不超過12cm),DE的長不變;
(4)如圖②,已知∠AOB=120°,過角的內部任一點C畫射線OC.若OD,OE分別平分∠AOC和∠BOC.試說明∠DOE的度數(shù)與射線OC的位置無關.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:∠AOB是一個直角,作射線OC,再分別作∠AOC和∠BOC的平分線OD、OE.
(1)如圖①,當∠BOC=70°時,求∠DOE的度數(shù);
(2)如圖②,若射線OC在∠AOB內部繞O點旋轉,當∠BOC=α時,求∠DOE的度數(shù).
(3)如圖③,當射線OC在∠AOB外繞O點旋轉時,畫出圖形,直接寫出∠DOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】大家在學完勾股定理的證明后發(fā)現(xiàn)運用“同一圖形的面積不同表示方式相同”可 以證明一類含有線段的等式,這種解決問題的方法我們稱之為面積法.學有所用:在等腰 三角形 ABC中,AB=AC,其一腰上的高為h,M 是底邊BC上的任意一點,M 到腰AB、AC 的距離分別為 h1、h2 .
(1)請你結合圖形來證明: h1+h2=h;
(2)當點M在BC延長線上時,h1、h2、h 之間又有什么樣的結論.請你畫出圖形,并直
接寫出結論不必證明;
(3)利用以上結論解答,如圖在平面直角坐標系中有兩條直線l1:y=x+3,l2:y=-3x+3
若 l2上的一點M 到l1的距離是,求點 M 的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們規(guī)定:一列數(shù)x1,x2,x3,……,xn,從這列數(shù)的第二項數(shù)起,每一項與它前面的項的比都等于一個常數(shù),就把這樣的一列數(shù)叫做等比數(shù)列,這個常數(shù)叫做等比數(shù)列的公比.如1,2,4,8,…….這列數(shù)就是等比數(shù)列,公比是2.
(1)等比數(shù)列5,-15,45,-135,……,請計算這個等比數(shù)列的公比?
(2)若一個等比數(shù)列:-9,a,b,……,的公比是-,求a,b的值.
(3)一個等比數(shù)列的第二項是-10,第三項是-20,求這組數(shù)列的第一項和第五項.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=60°,AB=2,點P是這個菱形內部或邊上的一點,若以點P、B、C為頂點的三角形是等腰三角形,則P、D(P、D兩點不重合)兩點間的最短距離為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),已知正方形ABCD的對角線AC、BD相交于點O,E是AC上一點,連接EB,過點A作AM⊥BE,垂足為M,AM交BD于點F.
(1)求證:OE=OF;
(2)如圖(2),若點E在AC的延長線上,AM⊥BE于點M,交DB的延長線于點F,其他條件不變,則結論“OE=OF”還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探索性問題:
已知:b是最小的正整數(shù),且a、b滿足(c﹣5)2+|a+b|=0,請回答問題:
(1)請直接寫出a、b、c的值.a= ,b= ,c= ;
(2)數(shù)軸上a、b、c三個數(shù)所對應的點分別為A、B、C,點A、B、C同時開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒1個單位長度和3個單位長度的速度向右運動,假設t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC.
①t秒鐘過后,AC的長度為 (用t的關系式表示);
②請問:BC﹣AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com