【題目】探索性問題:

已知:b是最小的正整數(shù),且a、b滿足(c﹣5)2+|a+b|=0,請(qǐng)回答問題:

(1)請(qǐng)直接寫出a、b、c的值.a=   ,b=   ,c=   ;

(2)數(shù)軸上a、b、c三個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)分別為A、B、C,點(diǎn)A、B、C同時(shí)開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒1個(gè)單位長度和3個(gè)單位長度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC.

①t秒鐘過后,AC的長度為   (用t的關(guān)系式表示);

請(qǐng)問:BC﹣AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說明理由;若不變,請(qǐng)求其值.

【答案】(1)a=﹣1,b=1,c=5;(2)①6+4t;②BC﹣AB的值是不隨著時(shí)間t的變化而改變,其值為2.

【解析】

(1)根據(jù)b為最小的正整數(shù)求出b的值,再由非負(fù)數(shù)的和的性質(zhì)建立方程就可以求出a、b的值;
(2)①先分別表示出t秒鐘過后A、C的位置,根據(jù)數(shù)軸上兩點(diǎn)之間的距離公式就可以求出結(jié)論;
先根據(jù)數(shù)軸上兩點(diǎn)之間的距離公式分別表示出BCAB就可以得出BC-AB的值的情況.

(1)∵b是最小的正整數(shù),

∴b=1.

∵(c﹣5)2+|a+b|=0,

故答案為:a=﹣1,b=1,c=5;

(2)①由題意,得

t秒鐘過后A點(diǎn)表示的數(shù)為:﹣1﹣t,C點(diǎn)表示的數(shù)為:5+3t,

∴AC=5+3t﹣(﹣1﹣t)=6+4t;

故答案為:6+4t;

由題意,得

BC=4+2t,AB=2+2t,

∴BC﹣AB=4+2t﹣(2+2t)=2.

∴BC﹣AB的值是不隨著時(shí)間t的變化而改變,其值為2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,當(dāng)x>0時(shí),y的值隨x的值增大而增大的是(
A.y=﹣x2
B.y=x﹣1
C.y=﹣x+1
D.y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)先化簡,再求值:1﹣ + ,其中a=
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年某月的月歷上圈出了相鄰的三個(gè)數(shù)a、b、c,并求出了它們的和為39,這三個(gè)數(shù)在月歷中的排布不可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABO中,斜邊AB=1.若OC//BA,∠AOC=36°,則(
A.點(diǎn)B到AO的距離為sin54°
B.點(diǎn)B到AO的距離為tan36°
C.點(diǎn)A到OC的距離為sin36°sin54°
D.點(diǎn)A到OC的距離為cos36°sin54°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)題意設(shè)未知數(shù),并列出方程(不必求解).

(1)有兩個(gè)工程隊(duì),甲隊(duì)人數(shù)30名,乙隊(duì)人數(shù)10名,問怎樣調(diào)整兩隊(duì)的人數(shù),才能使甲隊(duì)的人數(shù)是乙隊(duì)人數(shù)的7倍.

(2)有一個(gè)班的同學(xué)準(zhǔn)備去劃船,租了若干條船,他們計(jì)算了一下,如果比原計(jì)劃多租1條船,那么正好每條船坐6人;如果比原計(jì)劃少租1條船,那么正好每條船坐9人.問這個(gè)班共有多少名同學(xué)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求不等式組 的解集并把解集表示在數(shù)軸上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】)如圖,在正方形ABCD中,AB=4cm,動(dòng)點(diǎn)M從A出發(fā),以1cm/s的速度沿折線AB﹣BC運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從A出發(fā),以2cm/s的速度沿折線AD﹣DC﹣CB運(yùn)動(dòng),M,N第一次相遇時(shí)同時(shí)停止運(yùn)動(dòng).設(shè)△AMN的面積為y,運(yùn)動(dòng)時(shí)間為x,則下列圖象中能大致反映y與x的函數(shù)關(guān)系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,∠ABC=ACB,D為線段CB上一點(diǎn)(不與C、B重合),點(diǎn)E為射線CA上一點(diǎn),∠ADE=AED.設(shè)∠BAD=α,CDE=β

1)如圖(1),

①若∠BAC=42°,DAE=30°,則α=  ,β=  

②若∠BAC=54°DAE=36°,則α=  ,β= 

③寫出αβ的數(shù)量關(guān)系,并說明理由;

2)如圖2,當(dāng)E點(diǎn)在CA的延長線上時(shí),其它條件不變,請(qǐng)直接寫出αβ的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案