【題目】(1)如圖①、②,AB∥CD,你能說明∠A、∠E、∠C的關系嗎?(請在圖形下的橫線上寫出其關系并選一個進行說明)
(2)如圖③若AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=80,則∠BFD=________.
【答案】(1)∠AEC=∠A+∠C或∠A=∠C+∠E;(2)40°
【解析】
(1)過點E作EF//AB,則EF//CD,根據平行線的性質可求出結論;
(2)根據三角形外角的性質和平行線的性質進行求解即可;
(3)利用兩直線平行,內錯角相等和角平分線定義進行解題即可.
(1)①過點E作EF//AB,如圖,
∵AB∥CD,
∴EF//CD,
∴∠A=∠AEF,∠C=∠CEF,
∵∠AEC=∠AEF+∠CEF
∴∠AEC=∠A+∠C;
②∵AB//CD
∴∠A=∠AFC,
又∵∠AFC=∠C+∠E,
∴∠A=∠C+∠E;
(2)如圖,過點E作EP∥AB,過F作FM∥AB,
∴AB∥CD∥EP∥FM,
∴∠ABE=∠BEP,∠CDE=∠DEP,∠ABF=∠BFM,∠CDF=∠DFM,
∴∠ABE+∠CDE=∠BED=80°,
∵BF平分∠ABE,DF平分∠CDE,
∴∠ABF+∠CDF=(∠ABE+∠CDE)=40°,
即∠BFD=40°.
科目:初中數學 來源: 題型:
【題目】如圖所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周長為36 cm,點P從點A開始沿AB邊向B點以每秒1cm的速度移動;點Q從點B沿BC邊向點C以每秒2cm的速度移動,如果同時出發(fā),則過3s時,△BPQ的面積為____cm2.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列命題中,真命題是( )
A. 如果三角形三個角的度數比是3:4:5,那么這個三角形是直角三角形
B. 如果直角三角形兩直角邊的長分別為a和b,那么斜邊的長為a2+b2
C. 若三角形三邊長的比為1:2:3,則這個三角形是直角三角形
D. 如果直角三角形兩直角邊分別為a和b,斜邊為c,那么斜邊上的高h的長為
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將長方形紙片ABCD折疊,使點D與點B重合,點C落在點C'處,折痕為EF,若∠ABE=25°,則∠EFC'的度數為( )
A.122.5°B.130°C.135°D.140°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,拋物線y=ax2+bx+c與直線y=﹣x+6分別交于x軸和y軸上同一點,交點分別是點B和點C,且拋物線的對稱軸為直線x=4.
(1)求出拋物線與x軸的兩個交點A,B的坐標.
(2)試確定拋物線的解析式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com