【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象相交于點(diǎn),與軸相交于點(diǎn).

1)填空:的值為 的值為 ;

2)以為邊作菱形,使點(diǎn)軸正半軸上,點(diǎn)在第一象限,求點(diǎn)的坐標(biāo);

【答案】13,12;(2D的坐標(biāo)為

【解析】

1)把點(diǎn)A4,n)代入一次函數(shù)y=x-3,得到n的值為3;再把點(diǎn)A4,3)代入反比例函數(shù),得到k的值為12;
2)根據(jù)坐標(biāo)軸上點(diǎn)的坐標(biāo)特征可得點(diǎn)B的坐標(biāo)為(2,0),過點(diǎn)AAEx軸,垂足為E,過點(diǎn)DDFx軸,垂足為F,根據(jù)勾股定理得到AB=,根據(jù)AAS可得△ABE≌△DCF,根據(jù)菱形的性質(zhì)和全等三角形的性質(zhì)可得點(diǎn)D的坐標(biāo).

1)把點(diǎn)A(4,n)代入一次函數(shù),可得;

把點(diǎn)A(4,3)代入反比例函數(shù),可得,

解得k=12.

2)∵一次函數(shù)軸相交于點(diǎn)B,

,解得,

∴點(diǎn)B的坐標(biāo)為(20

如圖,過點(diǎn)A軸,垂足為E,

過點(diǎn)D軸,垂足為F,

A4,3),B(2,0)

OE=4AE=3,OB=2,

BE=OEOB=42=2

中,.

∵四邊形ABCD是菱形,

.

軸,軸,

.

中, ,AB=CD,

CF=BE=2,DF=AE=3

.

∴點(diǎn)D的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形硬紙片ABCD的頂點(diǎn)A軸的正半軸及原點(diǎn)上滑動(dòng),頂點(diǎn)B軸的正半軸及原點(diǎn)上滑動(dòng),點(diǎn)EAB的中點(diǎn),AB=24,BC=5,給出下列結(jié)論:①點(diǎn)A從點(diǎn)O出發(fā),到點(diǎn)B運(yùn)動(dòng)至點(diǎn)O為止,點(diǎn)E經(jīng)過的路徑長為12π;②OAB的面積的最大值為144;③當(dāng)OD最大時(shí),點(diǎn)D的坐標(biāo)為,其中正確的結(jié)論是_________(填寫序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】天貓商城某網(wǎng)店銷售某款藍(lán)牙耳機(jī),進(jìn)價(jià)為100在元旦即將來臨之際,開展了市場(chǎng)調(diào)查,當(dāng)藍(lán)牙耳機(jī)銷售單價(jià)是180元時(shí),平均每月的銷售量是200件,若銷售單價(jià)每降低2元,平均每月就可以多售出10件.

設(shè)每件商品降價(jià)x元,該網(wǎng)店平均每月獲得的利潤為y元,請(qǐng)寫出yx元之間的函數(shù)關(guān)系;

該網(wǎng)店應(yīng)該如何定價(jià)才能使得平均每月獲得的利潤最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把菱形向右平移至的位置,作,垂足為相交于點(diǎn),的延長線交于點(diǎn),連接,則下列結(jié)論:

;②;③:④.

則其中所有成立的結(jié)論是(

A.①②③④B.①②④C.②③④D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtAOB中,∠AOB=90°,OA=3,OB=2,將RtAOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得RtFOE,將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某日,深圳高級(jí)中學(xué)(集團(tuán))南北校區(qū)初三學(xué)生參加?xùn)|校區(qū)下午時(shí)的交流活動(dòng),南校區(qū)學(xué)生中午乘坐校車出發(fā),沿正北方向行12公里到達(dá)北校區(qū),然后南北校區(qū)一同前往東校區(qū)(等待時(shí)間不計(jì)).如圖所示,已知東校區(qū)在南校區(qū)北偏東方向,在北校區(qū)北偏東方向.校車行駛狀態(tài)的平均速度為,途中一共經(jīng)過30個(gè)紅綠燈,平均每個(gè)紅綠燈等待時(shí)間為30秒.

1)求北校區(qū)到東校區(qū)的距離;

2)通過計(jì)算,說明南北校區(qū)學(xué)生能否在前到達(dá)東校區(qū).(本題參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1x+4的圖象與反比例函數(shù)y2的圖象交于A(﹣1a),B兩點(diǎn),與x軸交于點(diǎn)C

1)求k

2)根據(jù)圖象直接寫出y1y2時(shí),x的取值范圍.

3)若反比例函數(shù)y2與一次函數(shù)y1x+4的圖象總有交點(diǎn),求k的取值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)坐標(biāo)為,與軸交于點(diǎn),與軸交于點(diǎn),.

1)求二次函數(shù)的表達(dá)式;

2)過點(diǎn)平行于軸,交拋物線于點(diǎn),點(diǎn)為拋物線上的一點(diǎn)(點(diǎn)上方),作平行于軸交于點(diǎn),當(dāng)點(diǎn)在何位置時(shí),四邊形的面積最大?并求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

1)將二次函數(shù)化成的形式;

2)在平面直角坐標(biāo)系中畫出的圖象;

3)結(jié)合函數(shù)圖象,直接寫出時(shí)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案