如圖,已知正方形ABCD,點P為射線BA上的一點(不和點A,B重合),過P作PE⊥CP,且CP=PE.過E作EF∥CD交射線BD于F.

1.若CB=6,PB=2,則EF=       ;DF=      ;

2.請?zhí)骄緽F,DG和CD這三條線段之間的數(shù)量關(guān)系,寫出你的結(jié)論并證明;

3.如圖2,點P在線段BA的延長線上,當tan∠BPC=       時,四邊形EFCD與四邊形PEFC的面積之比為

 

 

1.EF=6;DF=

2.BF+2DG=CD.

理由如下:如圖⑴,連接AE,AC.

∵△EPC為等腰Rt△;四邊形ABCD為正方形,

∠ECP=∠ACB=45°,

∴∠ECA=∠PCB.

∴△EAC∽△PCB.   ………………………4分

∴∠EAC=∠PBC=90°.

∵∠BAC=∠ABD=45°,

∴∠EAB+∠ABF=180°.

∴EA∥BF.

又AB∥EF,

∴四邊形EABF為平行四邊形.………………5分

∴EF=AB=CD.

又∵AB∥CD,

∴EF∥CD.

∴△EFG∽△CDG .

.………………………………………………………6分

∴DF=2GF=2DG.……………………………………………………7分

∴BF+2DG=BD=CD.……………………………………………8分

3.tan∠BPC=.…………………………………………………10分

解析:本題綜合了正方形、平行四邊形、三角形相似、角的正切值的知識,綜合性較強。

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊AB與正方形AEFM的邊AM在同一直線上,直線BE與DM交于點N.求證:BN⊥DM.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•北碚區(qū)模擬)如圖,已知正方形ABCD,點E是BC上一點,點F是CD延長線上一點,連接EF,若BE=DF,點P是EF的中點.
(1)求證:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知正方形ABCD,點E在BC邊上,將△DCE繞某點G旋轉(zhuǎn)得到△CBF,點F恰好在AB邊上.
(1)請畫出旋轉(zhuǎn)中心G (保留畫圖痕跡),并連接GF,GE;
(2)若正方形的邊長為2a,當CE=
a
a
時,S△FGE=S△FBE;當CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 時,S△FGE=3S△FBE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知正方形ABCD的對角線交于O,過O點作OE⊥OF,分別交AB、BC于E、F,若AE=4,CF=3,則EF的值是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知正方形ABCD的對角線AC,BD相交于點O,E是AC上的一點,過點A作AG⊥BE,垂足為G,AG交BD于點F.
(1)試說明OE=OF;
(2)當AE=AB時,過點E作EH⊥BE交AD邊于H.若該正方形的邊長為1,求AH的長.

查看答案和解析>>

同步練習冊答案