【題目】文具店有三種品牌的6個筆記本,價格是4,5,7(單位:元)三種,從中隨機拿出一個本,已知(一次拿到7元本).
(1)求這6個本價格的眾數(shù).
(2)若琪琪已拿走一個7元本,嘉嘉準備從剩余5個本中隨機拿一個本.
①所剩的5個本價格的中位數(shù)與原來6個本價格的中位數(shù)是否相同?并簡要說明理由;
②嘉嘉先隨機拿出一個本后不放回,之后又隨機從剩余的本中拿一個本,用列表法求嘉嘉兩次都拿到7元本的概率.
【答案】(1)眾數(shù)是7;(2)①相同;見詳解;②
【解析】
(1)由概率公式求出7元本的個數(shù),由眾數(shù)的定義即可得出答案;
(2)①由中位數(shù)的定義即可得出答案;
②用列表法得出所有結果,嘉嘉兩次都拿到7元本的結果有6個,由概率公式即可得出答案.
解:
(1)∵(一次拿到7元本),
∴7元本的個數(shù)為6×=4(個),按照從小到大的順序排列為4,5, 7,7,7,7,
∴這6個本價格的眾數(shù)是7.
(2)①相同;
∵原來4、5、7、7、7、7,∴中位數(shù)為,
5本價格為4、5、7、7、7,中位數(shù)為7,
∴,∴相同.
②見圖
第一個 第二個 | 4 | 5 | 7 | 7 | 7 |
4 | |||||
5 | |||||
7 | |||||
7 | |||||
7 |
∴(兩次都為7).
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A在x軸正半軸上,點B在y軸正半軸上,O為坐標原點,OA=OB=1,過點O作OM1⊥AB于點M1;過點M1作M1A1⊥OA于點A1:過點A1作A1M2⊥AB于點M2;過點M2作M2A2⊥OA于點A2…以此類推,點M2019的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系中的圖形M,N,給出如下定義:如果點P為圖形M上任意一點,點Q為圖形N上任意一點,那么稱線段PQ長度的最小值為圖形M,N的“近距離”,記作 d(M,N).若圖形M,N的“近距離”小于或等于1,則稱圖形M,N互為“可及圖形”.
(1)當⊙O的半徑為2時,
①如果點A(0,1),B(3,4),那么d(A,⊙O)=_______,d(B,⊙O)= ________;
②如果直線與⊙O互為“可及圖形”,求b的取值范圍;
(2)⊙G的圓心G在軸上,半徑為1,直線與x軸交于點C,與y軸交于點D,如果⊙G和∠CDO互為“可及圖形”,直接寫出圓心G的橫坐標m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線C1:y=ax2+bx+c向左平移1個單位長度,再向上平移4個單位長度得到拋物線C2:y=x2.
(1)直接寫出拋物線C1的解析式 ;
(2)如圖1,已知拋物線C1與x軸交于A,B兩點,點A在點B的左側,點P(,t)在拋物線C1上,QB⊥PB交拋物線于點Q.求點Q的坐標;
(3)已知點E,M在拋物線C2上,EM∥x軸,點E在點M的左側,過點M的直線MD與拋物線C2只有一個公共點(MD與y軸不平行),直線DE與拋物線交于另一點N.若線段NE=DE,設點M,N的橫坐標分別為m,n,直接寫出m和n的數(shù)量關系(用含m的式子表示n)為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+3x+2與y軸交于點A,點B是拋物線的頂點,點C與點A是拋物線上關于對稱軸對稱的兩個點,點D在x軸上運動,則四邊形ABCD的兩條對角線的長度之和的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)(a≠0)的圖象與x軸交于A、B兩點,與y軸交于C點,且對稱軸為x=1,點B坐標為(﹣1,0).則下面的四個結論:①2a+b=0;②4a-2b+c<0;③ac>0;④當y<0時,x<-1或x>2.其中正確的個數(shù)是
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,P是△ABC形內(nèi)一點,且∠APB=∠APC=135°.
(1)求證:△CPA∽△APB;
(2)試求tan∠PCB的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在某次斯諾克比賽中,白球位于點 A 處,在點 A 正北方向的點 B 處有一顆紅球,在點 A 正東方向 C 處有一顆黑球,在 BC 正中間的點 D 處有一顆籃球,其中點 C 在點 B 的南偏東 37°方向上,選手將白球沿正北方想推進 10cm 到達點 E 處時,測得點D 在點E 的北偏東45°方向上,求此時白球與紅球的距離有多遠?(參考數(shù)據(jù):sin37°≈,cos37°≈ ,tan37°≈)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com