【題目】中國高鐵近年來用震驚世界的速度不斷發(fā)展,已成為當(dāng)代中國一張耀眼的“國家名片”。修建高鐵時常常要逢山開道、遇水搭橋。如圖,某高鐵在修建時需打通一直線隧道MN(M、N為山的兩側(cè)),工程人員為了計算MN兩點之間的直線距離,選擇了在測量點A、BC進(jìn)行測量,點BC分別在AM、AN上,現(xiàn)測得AM=1200米,AN=2000米,AB=30米,BC=45米,AC=18米,求直線隧道MN的長。

【答案】MN=3000

【解析】試題分析:

由已知條件易證△ABC∽△ANM,然后利用相似三角形對應(yīng)邊成比例即可求出MN的長.

試題解析:

,

,

又∵

∴△ABC∽△ANM,

,

∵BC=45

∴MN=3000.

答:直線隧道MN長為3000.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A3,1)與B10),PQ是直線上的一條動線段且QP的下方),當(dāng)AP+PQ+QB最小時,Q點坐標(biāo)為(

A.B.,C.0,0D.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點P(1,﹣4)、Q(m,n)在函數(shù)(x>0)的圖象上,當(dāng)m>1時,過點P分別作x軸、y軸的垂線,垂足為點A,B;過點Q分別作x軸、y軸的垂線,垂足為點C、D.QD交PA于點E,隨著m的增大,四邊形ACQE的面積(

A.減小 B.增大 C.先減小后增大 D.先增大后減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是反比例函數(shù)ym<0)位于第二象限的圖像上的一個動點,過點AACx

軸于點CM為是線段AC的中點,過點MAC的垂線,與反比例函數(shù)的圖像及y軸分別交于B、

D兩點.順次連接AB、C、D.設(shè)點A的橫坐標(biāo)為n

(1)求點B的坐標(biāo)(用含有m、n的代數(shù)式表示);

(2)求證:四邊形ABCD是菱形;

(3)若△ABM的面積為2,當(dāng)四邊形ABCD是正方形時,求直線AB的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AD∥BC,對角線ACBD相交于點O,下列結(jié)論不一定正確的是(

A.AC=BDB.OB=OCC.∠BCD=∠BDCD.∠ABD=∠ACD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車租賃公司要購買轎車和面包車共輛.其中面包車不能超過轎車的兩倍,轎車每輛萬元,面包車每輛萬元,公司可投入的購車款不超過61萬元.

(小題1)符合公司要求的購買方案有哪幾種?請說明理由.

(小題2)如果每輛轎車的日租金為元,每輛面包車的日租金為元.假設(shè)新購買的這輛車每日都可租出,要使這輛車的日租金收入不低于1600元,那么應(yīng)選擇以上哪種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖象(折線OEFPMN)描述了某汽車在行駛過程中速度與時間的函數(shù)關(guān)系,下列說法中錯誤的是( )

A. 3分時汽車的速度是40千米/

B. 12分時汽車的速度是0千米/

C. 從第3分到第6分,汽車行駛了120千米

D. 從第9分到第12分,汽車的速度從60千米/時減少到0千米/

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)若a216,|b|3,且ab0,求a+b的值;

2)已知a、b互為相反數(shù)且a≠0c、d互為倒數(shù),m的絕對值是5,求m2﹣(﹣1+a+b)﹣cd的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并回答問題.我們知道|a|的幾何意義是指數(shù)軸上表示數(shù)的點與原點的距離,那么|a-b|的幾何意義又是什么呢?我們不妨考慮一下,取特殊值時的情況.比如考慮|5-(-6)|的幾何意義,在數(shù)軸上分別標(biāo)出表示-65的點,(如圖所示),兩點間的距離是11,而|5-(-6)|=11,因此不難看出|5-(-6)|就是數(shù)軸上表示-65兩點間的距離.

1|a-b|的幾何意義是_______;

2)當(dāng)|x-2|=2時,求出x的值.

3)設(shè)Q=|x+6|-|x-5|,請問Q是否存在最大值,若沒有請說明理由,若有,請求出最大值.

查看答案和解析>>

同步練習(xí)冊答案