【題目】已知m,n分別是關(guān)于x的一元二次方程ax2+bx+c=a與ax2+bx+c=b的一個根,且m=n+1.
(1)當m=2,a=﹣1時,求b與c的值;
(2)用只含字母a,n的代數(shù)式表示b;
(3)當a<0時,函數(shù)y=ax2+bx+c滿足b2﹣4ac=a,b+c≥2a,n≤﹣,求a的取值范圍.
【答案】(1)b=1,c=1;(2);(3)-≤a≤-.
【解析】
(1)由已知求出n,根據(jù)方程根的定義將m,n,a的值代入方程即可求解;
(2)根據(jù)方程根的定義將m,n的值代入方程消去c求解得到,再利用m+n=1,消去m,即可求出b只用字母a、n表示代數(shù)式,
(3)將(2)結(jié)論代入方程可得,由可得,繼而可得,根據(jù)n的取值范圍即可確定a的取值范圍.
(1)因為m,n分別是關(guān)于x的一元二次方程與的一個根,
所以,
由m=n+1,m=2得n = 1
把n=1,m=2,a = -1,代入(*)得,
,
解得;
(2)由(1)的方程組(*)中①-②,得
,
,由m=n+1,得m-n=1,
故a,
所以,
從而;
(3)把代入方程組(*)中②,得
,
由≥2a得
≥2a,
當a<0時,n≥-1,
由n≤-得,-1≤n≤-,
由,且,得
,
整理得,,因為a<0
所以,,
即,
由于在-1≤n≤-時隨n的增大而增大,
所以當n= -1時,a= -,當n= -時,a= -
即-≤a≤- .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角三角形ABC中,∠C=90°,AC=2,BC=2,點O是邊AB上的一個動點,以點O為圓心,OA為半徑作⊙O,與邊AC交于點M.
(1)如圖1,當⊙O經(jīng)過點C時,⊙O的直徑是 ;
(2)如圖2,當⊙O與邊BC相切時,切點為點N,試求⊙O與△ABC重合部分的面積;
(3)如圖3,當⊙O與邊BC相交時,交點為E、F,設(shè)CM=x,就判斷AEAF是否為定值,若是,求出這個定值;若不是,請用含x的代數(shù)式表示.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】使用家用燃氣灶燒開同一壺水所需的燃氣量(單位:)與旋鈕的旋轉(zhuǎn)角度(單位:度)()近似滿足函數(shù)關(guān)系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃氣灶燒開同一壺水的旋鈕角度與燃氣量的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出此燃氣灶燒開一壺水最節(jié)省燃氣的旋鈕角度約為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線與軸相交于點,與軸相交于點,以點為圓心,線段的長為半徑畫弧,與直線位于第一象限的部分相交于點,則點的坐標為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=6,E為AC邊上的點且AE=2EC,點D在BC邊上且滿足BD=DE,設(shè)BD=y,S△ABC=x,則y與x的函數(shù)關(guān)系式為( )
A.y=x2+B.y=x2+
C.y=x2+2D.y=x2+2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于點D,點F為AB上一點,連接CF,過點B作BE⊥BC交CF的延長線于點E,交AD于點H,且∠1=∠2
(1)求證:AB=AC;
(2)若∠1=22°,∠AFC=110°,求∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,反比例函數(shù)(k是常數(shù),且)的圖象經(jīng)過點.
(1)若b=4,求y關(guān)于x的函數(shù)表達式;
(2)點也在反比例函數(shù)y的圖象上:
①當且時,求b的取值范圍;
②若B在第二象限,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖示二次函數(shù)y=ax2+bx+c的對稱軸在y軸的右側(cè),其圖象與x軸交于點A(﹣1,0)與點C(x2,0),且與y軸交于點B(0,﹣2),小強得到以下結(jié)論:①0<a<2;②﹣1<b<0;③c=﹣1;④當|a|=|b|時x2>﹣1;以上結(jié)論中正確結(jié)論的序號為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com