【題目】如圖,在△ABC中,ABAC,BC6,EAC邊上的點且AE2EC,點DBC邊上且滿足BDDE,設BDy,SABCx,則yx的函數(shù)關系式為(  )

A.yx2+B.yx2+

C.yx2+2D.yx2+2

【答案】A

【解析】

A點作△ABC的高AH,過E點作EG垂直于BC,垂足為G. Rt△EDG中根據(jù)勾股定理可用x來表示EG=,由已知可知AH=3EG,即可得到ABC的面積SABC=x

=,通過變形即可得到答案.

解:過A點作△ABC的高AH,過E點作EG垂直于BC,垂足為G.

EGAH,

,

AE=2EC,

GC=CH,EG=AH

AB=AC,BC=6

CH=BH=3,GC=1,BG=5,

Rt△EDG中,,

BD=y,則DG=5-y,BD=DE=y

EG= =,

AH=

ABC的面積SABC===

即:,

yx2+ 25

故選A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,,,點上,連接在直線上,于點

1)求證:是等腰三角形;

2)求證:;

3)當中點時,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的頂點A、C分別在x、y軸的正半軸上,點D為對角線OB的中點,反比例函數(shù)(x0)在第一象限內(nèi)的圖象經(jīng)過點D,且與ABBC分別交于E、F兩點,若四邊形BEDF的面積為1,則k的值為_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,平面直角坐標系中,矩形OABC的頂點B的坐標為(75),頂點AC分別在x軸,y軸上,點D的坐標為(01),過點D的直線與矩形OABC的邊BC交于點G,且點G不與點C重合,以DG為一邊作菱形DEFG,點E在矩形OABC的邊OA上,設直線DG的函數(shù)表達式為y=kx+b

1)當CG=OD時,求直線DG的函數(shù)表達式;

2)當點E的坐標為(50)時,求直線DG的函數(shù)表達式;

3)連接BF,設FBG的面積為SCG的長為a,請直接寫出Sa的函數(shù)表達式及自變量a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了迎接2019年中考,某中學對全校九年級學生進行了一次數(shù)學模擬考試,并隨機抽取了部分學生的測試成績作為樣本進行分析,繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中的信息,解答下列問題;

1)本次調(diào)查中共抽查了______名學生,扇形統(tǒng)計圖中表示成績類別為優(yōu)的扇形所對應的圓心角是______度;

2)請補全條形統(tǒng)計圖;

3)若該中學九年級共有學生520人,請你估計該校九年級約有多少名學生的數(shù)學成績可以達到優(yōu)秀?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知m,n分別是關于x的一元二次方程ax2+bx+caax2+bx+cb的一個根,且mn+1

(1)m2,a=﹣1時,求bc的值;

(2)用只含字母a,n的代數(shù)式表示b;

(3)a0時,函數(shù)yax2+bx+c滿足b24aca,b+c2a,n≤﹣,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線AB與拋物線yax2+bx交于點A6,0)和點B1,﹣5).

1)求這條拋物線的表達式和直線AB的表達式;

2)如果點C在直線AB上,且∠BOC的正切值是,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點E、F分別在線段BC、DC上,線段AE繞點A逆時針旋轉(zhuǎn)后與線段AF重合.若,則旋轉(zhuǎn)的角度是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在中,分別在邊的中點,是對角線,過點,交的延長線于

1)求證:四邊形是平行四邊形;

2)若四邊形是矩形,則四邊形是什么特殊四邊形?并證明你的結論.

查看答案和解析>>

同步練習冊答案