【題目】如圖,矩形中,,點(diǎn)上,連接點(diǎn)在直線上,于點(diǎn)

1)求證:是等腰三角形;

2)求證:;

3)當(dāng)中點(diǎn)時(shí),求的長(zhǎng).

【答案】(1)詳見解析;(2)詳見解析;(3)

【解析】

1)由矩形的性質(zhì)得出ADBC,由平行線的性質(zhì)得出∠NAM=BMA,由已知∠AMN=AMB,得出∠AMN=NAM,即可得出結(jié)論;
2)由矩形的性質(zhì)得出ADBC,AD=BC=2,AB=CD=3,由平行線的性質(zhì)得出∠NAM=BMA,作NHAMH,由等腰三角形的性質(zhì)得出AH=AM,證明△NAH∽△AMB,得出,即可得出結(jié)論;

3)求出BM=CM=BC=×2=1,由(2)得AM2=2BMAN,得出AM2=2AN,由勾股定理得出AM2=AB2+BM2=10,求出AN=5,得出DN=AN-AD=3,設(shè)DE=x,則CE=3-x,證明△DNE∽△CME,得出,求出DE=,得出CE=DC-DE=,再由勾股定理即可得出答案.

解:(1)證明:∵四邊形是矩形,

,

,又

,

,即是等腰三角形;

2)解:作

,,

,

,

,

3)解:中點(diǎn),

,

由(2)得,,

,

,

設(shè),則,

,即,

解得,,即

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD中,∠DBC45°,DEBCE,BFCDF,DE、BF相交于H,BFAD的延長(zhǎng)線相交于G,下面結(jié)論:DBBE;A=∠BHEABBH;BHD∽△BDG.其中正確的結(jié)論是( 。

A.①②③④B.①②③C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形AOBC中,O為坐標(biāo)原點(diǎn),OAOB分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(0,3),∠ABO30°,將△ABC沿AB所在直線對(duì)折后,點(diǎn)C落在點(diǎn)D處,則點(diǎn)D的坐標(biāo)為(  )

A. (,)B. (2)C. (,)D. (,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南岸區(qū)正全力爭(zhēng)創(chuàng)全國(guó)衛(wèi)生城區(qū)和全國(guó)文明城區(qū)(簡(jiǎn)稱兩城同創(chuàng)).某街道積極響應(yīng)兩城同創(chuàng)活動(dòng),投入一定資金綠化一塊閑置空地,購(gòu)買了甲、乙兩種樹木共72棵,甲種樹木單價(jià)是乙種樹木單價(jià)的,且乙種樹木每棵80元,共用去資金6160元.

(1)求甲、乙兩種樹木各購(gòu)買了多少棵?

2)經(jīng)過一段時(shí)間后,種植的這批樹木成活率高,綠化效果好.該街道決定再購(gòu)買一批這兩種樹木綠化另一塊閑置空地,兩種樹木的購(gòu)買數(shù)量均與第一批相同,購(gòu)買時(shí)發(fā)現(xiàn)甲種樹木單價(jià)上漲了a%,乙種樹木單價(jià)下降了,且總費(fèi)用為6804元,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)拋物線形的拱形橋洞,橋洞離水面的最大高度為4m,跨度為10m,如圖所示,把它的圖形放在直角坐標(biāo)系中.

(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;

(2)一輛寬為2米,高為3米的貨船能否從橋下通過?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),為坐標(biāo)原點(diǎn),點(diǎn)為直線上一動(dòng)點(diǎn),過軸,交軸于點(diǎn)(點(diǎn)在原點(diǎn)右側(cè)),交雙曲線于點(diǎn),且,則當(dāng)存在時(shí),其面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】,中,,連接,中點(diǎn),連接

1)如圖1,若三點(diǎn)在同一直線上,,已知,求線段的長(zhǎng);

2)如圖2,若,求證:為等腰直角三角形;

3)如圖3,若,請(qǐng)判斷的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:直線AB與雙曲線y=點(diǎn)交于AB兩點(diǎn),直線ABx、y坐標(biāo)軸分別交于C、D兩點(diǎn),連接OA,若OA2,tanAOC=,B(3,m)

1)求一次函數(shù)與反比例函數(shù)解析式;

2)若點(diǎn)F是點(diǎn)D關(guān)于x軸的對(duì)稱點(diǎn),求△ABF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,BC6EAC邊上的點(diǎn)且AE2EC,點(diǎn)DBC邊上且滿足BDDE,設(shè)BDy,SABCx,則yx的函數(shù)關(guān)系式為(  )

A.yx2+B.yx2+

C.yx2+2D.yx2+2

查看答案和解析>>

同步練習(xí)冊(cè)答案