【題目】二次函數(shù)yax2+bx+ca≠0),經(jīng)過點(1.0),對稱軸l如圖所示,若Ma+bc,N2ab,Pa+c,則M,NP中,值小于0的數(shù)有( 。﹤.

A.2B.1C.0D.3

【答案】A

【解析】

由二次函數(shù)y=ax2+bx+ca≠0),經(jīng)過點(1.0),和與y軸交點的位置,可以判斷M的符號;由拋物線的開口方向和對稱軸,可以判斷N的符號;由拋物線的開口、對稱軸的位置、和過(1,0)點可以判斷P的符號,最后綜合得出結(jié)論,做出選擇.

解:(1)∵二次函數(shù)yax2+bx+ca≠0),經(jīng)過點(1.0),

a+b+c0

又∵拋物線與y軸交在y軸的正半軸,

c0

a+bc0,故M0

2)拋物線開口向下,因此a0,對稱軸在y軸左側(cè),﹣1的右側(cè),

∴﹣>﹣1,

2ab0,故N0;

3)拋物線開口向下,因此a0,對稱軸在y軸左側(cè),因此ab同號,∴b0

a+b+c0,

a+c=-b>0,因此P0

綜上所述:M0N0,P0

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學(xué)興趣小組設(shè)計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次活動共調(diào)查了   人;在扇形統(tǒng)計圖中,表示支付寶支付的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計圖補(bǔ)充完整.觀察此圖,支付方式的眾數(shù)   ”;

(3)在一次購物中,小明和小亮都想從微信”、“支付寶”、“銀行卡三種支付方式中選一種方式進(jìn)行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在四邊形ABCD中,ADBC, ABBC,∠DCB=75,以CD為一邊的等邊△DCE的另一頂點E在邊AB上.

(1)求∠AED的度數(shù);

(2)連接AC,如圖2所示,試判斷△ABC的形狀;

(3)如圖3所示,若F為線段CD上一點,AB=4,∠FBC=30,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為調(diào)查停課不停學(xué)期間九年級學(xué)生平均每天上網(wǎng)課時長,隨機(jī)抽取了名九年級學(xué)生做網(wǎng)絡(luò)問卷調(diào)查.共四個選項:小時以下)、小時)小時), 小時以上),每人只能選一

項.并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計表和統(tǒng)計圖.

被調(diào)查學(xué)生平均每天上網(wǎng)課時間統(tǒng)計表

時長

所占百分比

合計

根據(jù)以上信息,解答下列問題:

, ,

補(bǔ)全條形統(tǒng)計圖;

該校有九年級學(xué)生名,請你估計仝校九年級學(xué)生平均每天上網(wǎng)課時長在小時及以上的共多少名;

在被調(diào)查的對象中,平均每天觀看時長超過小時的,有名來自九班,名來自九班,其余都來自九班,現(xiàn)教導(dǎo)處準(zhǔn)備從選項中任選兩名學(xué)生進(jìn)行電話訪談,請用列表法或畫樹狀圖的方法求所抽取的名學(xué)生恰好來自同一個班級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有A,B兩種商品,已知買一件A商品比買一件B商品少30元,用160元全部購買A商品的數(shù)量與用400元全部購買B商品的數(shù)量相同.

1A,B兩種商品每件各是多少元?

2)如果小亮準(zhǔn)備購買A,B兩種商品共10件,總費(fèi)用不超過380元,且不低于300元,那么一共有幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018西安國際馬拉松”于20181020日在陜西西安舉行,該賽事共有三項:.“馬拉松”、.“半程馬拉松”、.“迷你馬拉松”小明和小剛有幸參與了該項賽事的志愿者服務(wù)工作,組委會隨機(jī)將志愿者分配到三個項目組.

1)小明被分配到“迷你馬拉松”項目組的概率為________

2)利用列表或樹狀圖求小明和小剛被分配到不同項目組的概率________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,EBC邊的中點, FCD邊上的一點, DF=1.若MN分別是線段AD、AE上的動點,則MN+MF的最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)學(xué)生的身體素質(zhì),教育行政部門規(guī)定學(xué)生每天參加戶外活動的平均時間不少于1小時.為了解學(xué)生參加戶外活動的情況,對部分學(xué)生參加戶外活動的時間進(jìn)行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:

(1)在這次調(diào)查中共調(diào)查了多少名學(xué)生?

(2)求戶外活動時間為1.5小時的人數(shù),并補(bǔ)全頻數(shù)分布直方圖;

(3)本次調(diào)查中學(xué)生參加戶外活動的平均時間是否符合要求?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,拋物線軸交于B、C兩點(點B在點C右側(cè)),與軸交于點,連接,

(1)求拋物線的解析式;

(2)點P在第二象限的拋物線上,連接PB交軸于D,取PB的中點E,過點E作軸于點H,連接DH,設(shè)點P的橫坐標(biāo)為.的面積為,求的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

(3)在(2)的條件下,作軸于F,連接CP、CD,,點上一點,連接軸于點,連接BF并延長交拋物線于點.,在射線CS上取點Q.連接QF,,求直線的解析式.

查看答案和解析>>

同步練習(xí)冊答案