如圖,已知直線l1與直線 l2:y=-2x+16相交于點C,直線l1、l2分別交x軸于A、B兩點,矩形DEFG的頂點D、E分別在l1、l2上,頂點F、G都在x軸上,且點G與B點重合,那么S矩形DEFG:S△ABC=   
【答案】分析:把y=0代入l1解析式求出x的值便可求出點A的坐標(biāo).令x=0代入l2的解析式求出點B的坐標(biāo).然后可求出AB的長.聯(lián)立方程組可求出交點C的坐標(biāo),繼而求出三角形ABC的面積,再利用xD=xB=8易求D點坐標(biāo).又已知yE=yD=8可求出E點坐標(biāo).故可求出DE,EF的長,即可得出矩形面積.
解答:解:由 x+=0,得x=-4.
∴A點坐標(biāo)為(-4,0),
由-2x+16=0,得x=8.
∴B點坐標(biāo)為(8,0),
∴AB=8-(-4)=12.
,解得 ,
∴C點的坐標(biāo)為(5,6),
∴S△ABC=AB•C=×12×6=36.
∵點D在l1上且xD=xB=8,
∴yD=×8+=8,
∴D點坐標(biāo)為(8,8),
又∵點E在l2上且yE=yD=8,
∴-2xE+16=8,
∴xE=4,
∴E點坐標(biāo)為(4,8),
∴DE=8-4=4,EF=8.
∴矩形面積為:4×8=32,
∴S矩形DEFG:S△ABC=32:36=8:9.
故答案為:8:9.
點評:此題主要考查了一次函數(shù)交點坐標(biāo)求法以及圖象上點的坐標(biāo)性質(zhì)等知識,根據(jù)題意分別求出C,D兩點的坐標(biāo)是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

6、如圖,已知直線l1,l2,l3相交于點O,∠1=35°,∠2=25°,則∠3等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•郯城縣一模)如圖,已知直線l1∥l2∥l3∥l4,相鄰兩條平行直線間的距離都是1,如果正方形ABCD的四個頂點分別在四條直線上,則cosα=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2007•黔南州)如圖,已知直線l1∥l2,∠1=50°,那么∠2=
50°
50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:已知直線l1∥l2,且l3、l4和l1、l2分別交于點A、B和點C、D,點P在AB上,設(shè)∠ADP=∠1,∠DPC=∠2,∠BCP=∠3.
(1)探究∠1、∠2、∠3之間的關(guān)系,并說明你的結(jié)論的正確性.
(2)若點P在A、B兩點之間運動時(點P和A、B不重合),∠1、∠2、∠3 之間的關(guān)系
不會
不會
發(fā)生變化(填會或不會)
(3)如果點P在A、B兩點外側(cè)運動時,(點P和A、B不重合)
①當(dāng)點P在射線AM上時,猜想∠1、∠2、∠3之間的關(guān)系為
∠2=∠3-∠1
∠2=∠3-∠1
;
②當(dāng)點P在射線BN上時,猜想∠1、∠2、∠3之間的關(guān)系為
∠3=∠1-∠2
∠3=∠1-∠2
(不必證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點C和D,在直線l3上有點P(點P與點C、D不重合),點A在直線l1上,點B在直線l2上.
(1)如果點P在C、D之間運動時,試說明∠PAC+∠PBD=∠APB;
(2)如果點P在直線l1的上方運動時,試探索∠PAC,∠APB,∠PBD之間的關(guān)系又是如何?
(3)如果點P在直線l2的下方運動時,∠PAC,∠APB,∠PBD之間的關(guān)系又是如何?
∠PAC=∠PBD+∠APB
∠PAC=∠PBD+∠APB
(直接寫出結(jié)論)

查看答案和解析>>

同步練習(xí)冊答案