【題目】為評估九年級學(xué)生在新冠肺炎疫情期間空中課堂的學(xué)習(xí)效果,某中學(xué)抽取了部分參加調(diào)研測試的學(xué)生成績作為樣本,并把樣本分為優(yōu)、良、中、差四類,繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息解答下列問題:

1)在這次調(diào)查中,一共抽取了多少名學(xué)生;

2)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

3)該校九年級共有320人參加了這次調(diào)研測試,請估算該校九年級共有多少名學(xué)生的成績達(dá)到了優(yōu)秀?

【答案】150名;(2)答案見解析;(364名.

【解析】

1)由良的人數(shù)除以其所占的百分比得到調(diào)查的總?cè)藬?shù);

2)成績類別為的人數(shù)=被抽取的學(xué)生總數(shù)×20%,然后補(bǔ)全條形統(tǒng)計(jì)圖.

3)校九年級學(xué)生的成績達(dá)到優(yōu)秀的人數(shù)=320×成績類別為優(yōu)的學(xué)生所占的百分比.

1

答:一共抽取50名學(xué)生.

2)成績?yōu)?/span>的學(xué)生人數(shù)為:

如圖:

3

答:估計(jì)該校共有64名學(xué)生達(dá)到優(yōu)秀.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線L1y=-x22x3x軸于A,B兩點(diǎn),交y軸于M點(diǎn)拋物線L1向右平移2個單位得到拋物線L2,L2x軸于C,D兩點(diǎn).

(1)求拋物線L2對應(yīng)的函數(shù)表達(dá)式;

(2)拋物線L1L2x軸上方的部分是否存在點(diǎn)N,使以A,CMN為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請說明理由;

(3)若點(diǎn)P是拋物線L1上的一個動點(diǎn)(P不與點(diǎn)A,B重合),那么點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn)Q是否在拋物線L2上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,ECD邊上一點(diǎn),

(1)將ADE繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),使AD、AB重合,得到ABF,如圖1所示.觀察可知:與DE相等的線段是   ,AFB=   

(2)如圖2,正方形ABCD中,P、Q分別是BC、CD邊上的點(diǎn),且∠PAQ=45°,試通過旋轉(zhuǎn)的方式說明:DQ+BP=PQ;

(3)在(2)題中,連接BD分別交AP、AQM、N,你還能用旋轉(zhuǎn)的思想說明BM2+DN2=MN2嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BAD=90°,點(diǎn)EBC的延長線上,且∠DEC=BAC.

(1)求證:DE是⊙O的切線;

(2)若ACDE,當(dāng)AB=8,CE=2時(shí),求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著地鐵和共享單車的發(fā)展,地鐵+單車已成為很多市民出行的選擇.李華從文化宮站出發(fā),先乘坐地鐵,準(zhǔn)備在離家較近的A,BC,D,E中的某一站出地鐵,再騎共享單車回家.設(shè)他出地鐵的站點(diǎn)與文化宮站的距離為(單位:km),乘坐地鐵的時(shí)間(單位:min)是關(guān)于的一次函數(shù),其關(guān)系如下表:

地鐵站

A

B

C

D

E

x/km

7

9

11

12

13

y1/min

16

20

24

26

28

(1)關(guān)于的函數(shù)解析式;

(2)李華騎單車的時(shí)間(單位:min)也受的影響,其關(guān)系可以用=2-1178來描述.求李華應(yīng)選擇在哪一站出地鐵,才能使他從文化宮站回到家所需的時(shí)間最短,并求出最時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若正比例函數(shù)的圖象經(jīng)過點(diǎn),則下列點(diǎn)也在該函數(shù)圖象上的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)拋物線過點(diǎn),對稱軸為直線

1)求二次函數(shù)的表達(dá)式和頂點(diǎn)的坐標(biāo).

2)將拋物線在坐標(biāo)平面內(nèi)平移,使其過原點(diǎn),若在平移后,第二象限的拋物線上存在點(diǎn),使為等腰直角三角形,請求出拋物線平移后的表達(dá)式,并指出其中一種情況的平移方式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABCBDE都是等腰直角三角形,∠ACB=∠BDE90°,點(diǎn)FAE的中點(diǎn),連接DFCF

1)如圖1,點(diǎn)DE分別在AB,BC邊上,填空:CFDF的數(shù)量關(guān)系是   ,位置關(guān)系是   ;

2)如圖2,將圖1中的BDEB順時(shí)針旋轉(zhuǎn)45°得到圖2,請判斷(1)中CFDF的數(shù)量關(guān)系和位置關(guān)系是否仍然成立,如果成立,請加以證明;如果不成立,請說明理由;

3)如圖3,將圖1中的BDEB順時(shí)針旋轉(zhuǎn)90°得到圖3,如果BD2,AC3,請直接寫出CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組:.請結(jié)合連意填空,完成本題的解答.

1)解不等式①,得    

2)解不等式②,得    

3)把不等式①和②的解集在數(shù)軸上表示出來;

4)原不等式組的解集為    

查看答案和解析>>

同步練習(xí)冊答案