【題目】如圖,在平面直角坐標系中,已知△ABC三個頂點的坐標分別是A(2,2),B(3,0),C(1,﹣1),AC交x軸于點P.
(1)∠ACB的度數(shù)為_____;
(2)P點坐標為______;
(3)以點O為位似中心,將△ABC放大為原來的2倍,請在圖中畫出所有符合條件的三角形.
【答案】(1)45°;(2)(,0);(3)見解析.
【解析】
(1)由題意得到三角形ABC為等腰直角三角形,即可確定出所求角度數(shù);
(2)利用待定系數(shù)法求出直線AC解析式,即可確定出P坐標;
(3)以為位似中心,將△ABC放大為原來的2倍,畫出相應圖形,如圖所示.
(1)∵∠ABC=90°,AB=CB=,
∴△ABC為等腰直角三角形,
∴∠ACB=45°;
故答案為:45°;
(2)由題意得:A(2,2),C(1,﹣1),
設(shè)直線AC解析式為y=kx+b,
把A與C坐標代入得: ,
解得:,即直線AC解析式為y=3x﹣4,
令y=0,得到x=,
則P的坐標為(,0);
故答案為:(,0);
(3)如圖所示:△A1B1C1和△A2B2C2為所求三角形.
科目:初中數(shù)學 來源: 題型:
【題目】我市城建公司新建了一個購物中心,共有商鋪30間,據(jù)調(diào)查分析,當每間的年租金為10萬元時,可全部租出:若每間的年租金每增加0.5萬元,則少租出商鋪一間,為提供優(yōu)質(zhì)服務,城建公司引入物業(yè)公司代為管理,租出的商鋪每間每年需向物業(yè)公司繳納物業(yè)費1萬元,未租出的商鋪不需要向物業(yè)公司繳納物業(yè)費.
(1)當每間商鋪的年租金定為13萬元時,能租出 間.
(2)當每問商鋪的年租金定為多少萬元時,該公司的年收益為286萬元,且使租客獲得實惠?(收益=租金﹣物業(yè)費)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC 中,∠BAC=90°,分別以 AC 和 BC 為邊向外作正方形 ACFG 和正方形 BCDE,過點 D 做 FC 的延長線的垂線,垂足為點 H.
(1)求證:△ABC≌△HDC;
(2)連接 FD,交 AC 的延長線于點 M,若 AG= ,tan∠ABC= ,求△FCM 的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,BC=6,E為BC中點,F是AB上一點,G為AD上一點,且BF=2,∠FEG=60°,EG交AC于點H,下列結(jié)論:①△BEF∽△CHE;②AG=1;③EH=;④S△BEF=3S△AGH;正確的是______.(填序號即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,并按要求解答.
(模型介紹)
如圖①,C是線段A、B上一點E、F在AB同側(cè),且∠A=∠B=∠ECF=90°,看上去像一個“K“,我們稱圖①為“K”型圖.
(性質(zhì)探究)
性質(zhì)1:如圖①,若EC=FC,△ACE≌△BFC
性質(zhì)2:如圖①,若EC≠FC,△ACE~△BFC且相似比不為1.
(模型應用)
應用1:如圖②,在四邊形ABCD中,∠ADC=90°,AD=1,CD=2,BC=2,AB=5.求BD.
應用2:如圖③,已知△ABC,分別以AB、AC為邊向外作正方形ABGF、正方形ACDE,AH⊥BC,連接EF.交AH的反向延長線于點K,證明:K為EF中點.
(1)請你完成性質(zhì)1的證明過程;
(2)請分別解答應用1,應用2提出的問題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李航想利用太陽光測量樓高.他帶著皮尺來到一棟樓下,發(fā)現(xiàn)對面墻上有這棟樓的影子,針對這種情況,他設(shè)計了一種測量方案,具體測量情況如下:如示意圖,李航邊移動邊觀察,發(fā)現(xiàn)站到點E處時,可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時,測得李航落在墻上的影子高度CD=1.2m,CE=0.6m,CA=30m(點A、E、C在同一直線上).已知李航的身高EF是1.6m,請你幫李航求出樓高AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與、軸分別交于、兩點.點為線段的中點.過點作直線軸于點.
(1)直接寫出的坐標;
(2)如圖1,點是直線上的動點,連接、,線段在直線上運動,記為,點是軸上的動點,連接點、,當取最大時,求的最小值;
(3)如圖2,在軸正半軸取點,使得,以為直角邊在軸右側(cè)作直角,,且,作的角平分線,將沿射線方向平移,點、,平移后的對應點分別記作、、,當的點恰好落在射線上時,連接,,將繞點沿順時針方向旋轉(zhuǎn)后得,在直線上是否存在點,使得為等腰三角形?若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校與圖書館在同一條筆直道路上,甲從學校去圖書館,乙從圖書館回學校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達目的地.兩人之間的距離(米)與時間(分鐘)之間的函數(shù)關(guān)系如圖所示.其中說法正確的是( )
A.甲的速度是60米/分鐘B.乙的速度是80米/分鐘
C.點的坐標為D.線段所表示的函數(shù)表達式為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com