【題目】如圖,將含30°角的直角三角尺ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)150°后得到△EBD,連接CD.若AB=4cm.則△BCD的面積為( 。

A. 4 B. 2 C. 3 D. 2

【答案】C

【解析】

過(guò)D點(diǎn)作BE的垂線,垂足為F,由∠ABC=30°及旋轉(zhuǎn)角∠ABE=150°可知∠CBE為平角.在RtABCAB=4ABC=30°,AC=2,BC=2,由旋轉(zhuǎn)的性質(zhì)可知BD=BC=2DE=AC=2,BE=AB=4由面積法DF×BE=BD×DEDF,SBCD=×BC×DF

過(guò)D點(diǎn)作BE的垂線垂足為F,

∵∠ABC=30°,ABE=150°,

∴∠CBE=ABC+∠ABE=180°.

RtABC中,∵AB=4,ABC=30°,AC=2,BC=2

由旋轉(zhuǎn)的性質(zhì)可知BD=BC=2,DE=AC=2BE=AB=4,

DF×BE=BD×DEDF×4=2×2,

解得DF=

SBCD=×BC×DF=×2×=3(cm2

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以BC為底邊的等腰△ABC,點(diǎn)DEG分別在BC,AB,AC上,且EGBC,DEAC,延長(zhǎng)GE至點(diǎn)F,使得BE=BF

1)求證:四邊形BDEF為平行四邊形;

2)當(dāng)∠C=45°,BD=2時(shí),求D,F兩點(diǎn)間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是一系列用同樣規(guī)格的黑白兩色正方形瓷磚鋪設(shè)長(zhǎng)方形地面.請(qǐng)觀察并解答下列問(wèn)題:

1)在第n個(gè)圖形中,共有多少塊黑瓷磚(用含n的代數(shù)式表示);

2)設(shè)鋪設(shè)地面所用瓷磚的總塊數(shù)為y,用(1)中的n表示y;

3)當(dāng)n12時(shí),求y的值;

4)若黑瓷磚每塊3元,白瓷磚每塊2元,在問(wèn)題(3)中,試求共需花多少元購(gòu)買瓷磚.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=ax2﹣8ax+12a(a<0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),拋物線上另有一點(diǎn)C在第一象限,且使△OCA∽△OBC,

(1)求OC的長(zhǎng)及的值;

(2)設(shè)直線BC與y軸交于P點(diǎn),當(dāng)點(diǎn)C恰好在OP的垂直平分線上時(shí),求直線BP和拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在,,,.點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)的速度移動(dòng),同時(shí)點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)的速度移動(dòng).當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,

秒后, 的面積等于

秒后,的長(zhǎng)度等于

運(yùn)動(dòng)過(guò)程中,四邊形APQC的面積能否等于?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一張長(zhǎng)方形紙片(如圖①),,將紙片折疊,使落在邊上,的對(duì)應(yīng)點(diǎn),折痕為(如圖②),再將長(zhǎng)方形為折痕向右折疊,若點(diǎn)落在的三等分點(diǎn)上,則的長(zhǎng)為(

A.8B.10C.810D.812

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年我市某公司分兩次采購(gòu)了一批大蒜,第一次花費(fèi)40萬(wàn)元,第二次花費(fèi)60萬(wàn)元,已知第一次采購(gòu)時(shí)每噸大蒜的價(jià)格比去年的平均價(jià)格上漲了500元,第二次采購(gòu)時(shí)每噸大蒜的價(jià)格比去年的平均價(jià)格下降了500元,第二次采購(gòu)的數(shù)量是第一次采購(gòu)數(shù)量的兩倍.

1)試問(wèn)去年每噸大蒜的平均價(jià)格是多少元?

2)該公司可將大蒜加工成蒜粉或蒜片,若單獨(dú)加工成蒜粉,每天可加工8噸大蒜,每噸大蒜獲利1000元;若單獨(dú)加工成蒜片,每天可加工12噸大蒜,每噸大蒜獲利600.為出口需要,所有采購(gòu)的大蒜必須在30天內(nèi)加工完畢,且加工蒜粉的大蒜數(shù)量不少于加工蒜片的大蒜數(shù)量的一半.為獲得最大利潤(rùn),應(yīng)將多少噸大蒜加工成蒜粉?最大利潤(rùn)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形網(wǎng)絡(luò)中,ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A、B、C的坐標(biāo)分別為A(-2,4)、B(-2,0)、C(-41),結(jié)合所給的平面直角坐標(biāo)系解答下列問(wèn)題:

1)畫(huà)出ABC關(guān)于原點(diǎn)O中心對(duì)稱圖形A1B1C1.

2)平移ABC,使點(diǎn)A移動(dòng)到點(diǎn)A2(0,2),畫(huà)出平移后的A2B2C2并寫(xiě)出點(diǎn)B2、C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)問(wèn)題背景:已知:如圖①-1,,點(diǎn)的位置如圖所示,連結(jié),試探究、之間有什么數(shù)量關(guān)系,并說(shuō)明理由.(將下面的解答過(guò)程補(bǔ)充完整,括號(hào)內(nèi)寫(xiě)上相應(yīng)理由或數(shù)學(xué)式)

解:(1、之間的數(shù)量關(guān)系是:(只要關(guān)系式形式正確即可)

理由:如圖①-2,過(guò)點(diǎn)

(作圖),

(  )

(已知)

(作圖)

_______(  ),

_______(  ),

(等量代換)

又∵(角的和差),

(等量代換)

總結(jié)反思:本題通過(guò)添加適當(dāng)?shù)妮o助線,從而利用平行線的性質(zhì),使問(wèn)題得以解決.

2)類比探究:如圖②,,點(diǎn)的位置如圖所示,連結(jié)、,請(qǐng)同學(xué)們類比(1)的解答過(guò)程,試探究、之間有什么數(shù)量關(guān)系,并說(shuō)明理由.

3)拓展延伸:如圖③,,的平分線相交于點(diǎn),若,求的度數(shù),請(qǐng)直接寫(xiě)出結(jié)果,不說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案