【題目】如圖,在邊長為8的等邊△ABC中,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是平面上一點(diǎn),且線段DE=2,將線段EB繞點(diǎn)E順時(shí)針旋轉(zhuǎn)60得到線段EF,連接AF.
(1)如圖1,當(dāng)BE=2時(shí),求線段AF的長;
(2)如圖2,求證:AF=CE;
【答案】(1) (2)見解析
【解析】
(1)作AG⊥BC于G點(diǎn),延長FE交AG于H點(diǎn),構(gòu)造有60角的直角三角形,再運(yùn)用勾股定理可求解;
(2)利用等邊三角形的性質(zhì)可證明△FBA≌△EBC,從而證明AF=CE.
解:(1)作AG⊥BC于G點(diǎn),延長FE交AG于H點(diǎn)
∵AB=AC,
∴∠BAG=30,
∵EB繞點(diǎn)E順時(shí)針旋轉(zhuǎn)60得到線段EF,
∴∠BEF=60,
∴∠BEF=∠B,
∴EF∥BC,
∵AG⊥BC,
∴AG⊥FH,
在Rt△AEH中,∵AE=6,∠EAH=30,
∴,,
在Rt△AFH中,.
(2)連接FB,
∵EB繞點(diǎn)E順時(shí)針旋轉(zhuǎn)60得到線段EF,
∴△EBF是等邊三角形,
∴FB=EB, ∴∠FBE=∠ABC=60
∴∠FBE+∠EBA=∠ABC+∠EBA
即∠FBA=∠EBC,
又∵AB=BC,
∴△FBA≌△EBC ,
∴AF=CE,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點(diǎn),F是AM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長線于點(diǎn)E,交DC于點(diǎn)N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)新舊動(dòng)能轉(zhuǎn)換.提高公司經(jīng)濟(jì)效益.某科技公司近期研發(fā)出一種新型高科技設(shè)備,每臺(tái)設(shè)備成本價(jià)為30萬元,經(jīng)過市場調(diào)研發(fā)現(xiàn),每臺(tái)售價(jià)為40萬元時(shí),年銷售量為600臺(tái);每臺(tái)售價(jià)為45萬元時(shí),年銷售量為550臺(tái).假定該設(shè)備的年銷售量y(單位:臺(tái))和銷售單價(jià)(單位:萬元)成一次函數(shù)關(guān)系.
(1)求年銷售量與銷售單價(jià)的函數(shù)關(guān)系式;
(2)根據(jù)相關(guān)規(guī)定,此設(shè)備的銷售單價(jià)不得高于70萬元,如果該公司想獲得10000萬元的年利潤.則該設(shè)備的銷售單價(jià)應(yīng)是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=kx2+(3k+2)x+2k+2.
(1)求證:拋物線與x軸有交點(diǎn).
(2)經(jīng)研究發(fā)現(xiàn),無論k為何值,拋物線經(jīng)過某些特定的點(diǎn),請(qǐng)求出這些定點(diǎn).
(3)若y1=2x+2,在﹣2<x<﹣1范圍內(nèi),請(qǐng)比較y1,y的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙P的直徑,點(diǎn)在⊙P上,為⊙P外一點(diǎn),且∠ADC=90°,直線為⊙P的切線.
⑴ 試說明:2∠B+∠DAB=180°
⑵ 若∠B=30°,AD=2,求⊙P的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象過點(diǎn),是中點(diǎn).
(1)求此二次函數(shù)的解析式.
(2)已知,點(diǎn)在拋物線上,點(diǎn)在軸上,當(dāng)四點(diǎn)構(gòu)成以為邊的平行四邊形,求此時(shí)點(diǎn)的坐標(biāo).
(3)將拋物線在軸下方的部分沿軸向上翻折,得曲線(為關(guān)于軸的對(duì)稱點(diǎn)),在原拋物線軸的上方部分取一點(diǎn),連接,與翻折后的曲線交于點(diǎn). 若的面積是面積的3倍,這樣的點(diǎn)是否存在?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,B,C,E是同一直線上的三個(gè)點(diǎn), 四邊形ABCD與四邊形CEFG都是正方形.連接BG,DE.
(1)探究BG與DE之間的數(shù)量關(guān)系, 并證明你的結(jié)論;
(2)當(dāng)正方形CEFG繞點(diǎn)C在平面內(nèi)順時(shí)針轉(zhuǎn)動(dòng)到如圖②所示的位置時(shí),線段BG和ED有何關(guān)系? 寫出結(jié)論并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形的頂點(diǎn),的坐標(biāo)分別為(2,0),(0,3) ,拋物線:經(jīng)過,兩點(diǎn).拋物線的頂點(diǎn)為.
(1)求拋物線的表達(dá)式和點(diǎn)的坐標(biāo);
(2)點(diǎn)是拋物線對(duì)稱軸上一動(dòng)點(diǎn),當(dāng)為等腰三角形時(shí),求所有符合條件的點(diǎn)的坐標(biāo);
(3)如圖2,現(xiàn)將拋物線進(jìn)行平移,保持頂點(diǎn)在直線上,若平移后的拋物線與射線只有一個(gè)公共點(diǎn).設(shè)平移后拋物線的頂點(diǎn)橫坐標(biāo)為,求的值或取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮玩一個(gè)游戲:三張大小、質(zhì)地都相同的卡片上分別標(biāo)有數(shù)字2,3,4(背面完全相同),現(xiàn)將標(biāo)有數(shù)字的一面朝下.小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計(jì)算小明和小亮抽得的兩個(gè)數(shù)字之和.若和為奇數(shù),則小明勝;若和為偶數(shù),則小亮勝.
(1)請(qǐng)你用畫樹狀圖或列表的方法,求出這兩數(shù)和為6的概率.
(2)你認(rèn)為這個(gè)游戲規(guī)則對(duì)雙方公平嗎?說說你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com