【題目】如圖,在四邊形ABCD中,E是AB上的一點,△ADE和△BCE都是等邊三角形,點P、Q、M、N分別為AB、BC、CD、DA的中點,則四邊形MNPQ是( )
A.等腰梯形B.矩形C.菱形D.正方形
【答案】C
【解析】
試題連接AC與BD,首先證得△AEC≌△DEB,即可得到AC=BD,然后利用三角形的中位線定理證得四邊形MNPQ的對邊平行且相等,并且鄰邊相等,從而證得四邊形MNPQ是菱形.
證明:連接BD、AC;
∵△ADE、△ECB是等邊三角形,
∴AE=DE,EC=BE,∠AED=∠BEC=60°;
∴∠AEC=∠DEB=120°;
在△AEC與△DEB中,
,
∴△AEC≌△DEB(SAS);
∴AC=BD;
∵M、N是CD、AD的中點,
∴MN是△ACD的中位線,即MN=AC,
同理可證得:NP=DB,QP=AC,MQ=BD,
∴MN=NP=PQ=MQ,
∴四邊形NPQM是菱形.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=8,BC=6,D為AB邊上的動點,過點D作DE⊥AB交邊AC于點E,過點E作EF⊥DE交BC于點F,連接DF.
(1)當AD=4時,求EF的長度;
(2)求△DEF的面積的最大值;
(3)設(shè)O為DF的中點,隨著點D的運動,則點O的運動路徑的長度為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知的圓心為點,拋物線y=ax2﹣x+c過點A,與交于B、C兩點,連接AB、AC,且AB⊥AC,B、C兩點的縱坐標分別是2、1.
(1)求B、C點坐標和拋物線的解析式;
(2)直線y=kx+1經(jīng)過點B,與x軸交于點D.點E(與點D不重合)在該直線上,且AD=AE,請判斷點E是否在此拋物線上,并說明理由;
(3)如果直線y=k1x﹣1與⊙A相切,請直接寫出滿足此條件的直線解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,圖①是一個三角形,分別連接三邊中點得圖②,再分別連接圖②中的小三角形三邊中點,得圖③……按此方法繼續(xù)下去.
在第個圖形中有______個三角形(用含的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,,,分別是邊,的中點,在邊上取點,點在邊上,且滿足,連接,作于點,于點,線段,,將分割成I、II、III、IV四個部分,將這四個部分重新拼接可以得到如圖2所示的矩形,若,則圖1中的長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】西安市的大雁塔又名“慈恩寺塔”,是國家級文物保護單位,玄奘為保存由天竺經(jīng)絲綢之路帶回長安的經(jīng)卷主持修建了大雁塔,最初五層,后加蓋至九層,是西安市的標志性建筑之一,某校社會實踐小組為了測量大雁塔的高度,在地面上C處垂直于地面豎立了高度為2米的標桿CD,這時地面上的點E,標桿的頂端點D,大雁塔的塔尖點B正好在同一直線上,測得EC=4米,將標桿CD向后平移到點G處,這時地面上的點F,標桿的頂端點H,大雁塔的塔尖點B正好在同一直線上(點F,點G,點E,點C與塔底處的點A在同一直線上),這時測得FG=6米,GC=53米,請你根據(jù)以上數(shù)據(jù),計算大雁塔的高度AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提高飲水質(zhì)量,越來越多的居民開始選購家用凈水器.一商家抓住商機,從廠家購進了A、B兩種型號家用凈水器共160臺,A型號家用凈水器進價是150元/臺,B型號家用凈水器進價是350元/臺,購進兩種型號的家用凈水器共用去36000元.
(1)求A、B兩種型號家用凈水器各購進了多少臺;
(2)為使每臺B型號家用凈水器的毛利潤是A型號的2倍,且保證售完這160臺家用凈水器的毛利潤不低于11000元,求每臺A型號家用凈水器的售價至少是多少元?(注:毛利潤=售價﹣進價)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點(不與B、C重合),∠ADE=∠B=α,DE交AC于點E,且cos∠α=,下列結(jié)論:①△ADE∽△ACD;②當BD=6時,△ABD與△DCE全等;③△DCE為直角三角形時,BD為8或;④0<CE≤6.4.其中正確的結(jié)論是_________.(把你認為正確結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,D是BC的中點,點G在AD上(點G不與A重合),過點G的直線交AB于E,交射線AC于點F,設(shè)AE=xAB,AF=yAC(x,y≠0).
(1)如圖1,若△ABC為等邊三角形,點G與D重合,∠BDE=30,求證:△AEF∽△DEA;
(2)如圖2,若點G與D重合,求證:x+y=2xy;
(3)如圖3,若AG=nGD,x=,y=,直接寫出n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com