【題目】如圖,在四邊形 ABCD 中,AD ∥ BC ,∠BCD=90° ,∠ABC=45° ,AD=CD ,CE 平分 ∠ ACB 交 AB 于點(diǎn) E ,在 BC 上截取 BF=AE ,連接 AF 交 CE 于點(diǎn) G ,連接 DG 交 AC 于點(diǎn) H ,過(guò)點(diǎn) A 作 AN ⊥ BC ,垂足為 N , AN 交 CE 于點(diǎn) M .則下列結(jié)論:① CM=AF ; ② CE ⊥ AF ; ③△ ABF ∽△ DAH ;④ GD 平分 ∠ AGC ,其中正確的序號(hào)是 ________ .
【答案】①②③④
【解析】
結(jié)論 ① 正確,證明 △ ACM ≌△ ABF 即可;結(jié)論 ② 正確,由 △ ACM ≌△ ABF 得出 ∠ 2= ∠ 4 ,進(jìn)而得 ∠ 4+∠ 6=90° ,即 CE ⊥ AF ,結(jié)論 ③ 正確,證法一:利用四點(diǎn)共圓;證法二:利用三角形全等;結(jié)論 ④ 正確,證法一:利用四點(diǎn)共圓,證法二:利用三角形全等.
解:
⑴ 結(jié)論 ① 正確.理由如下:
∵∠1=∠2 , ∠1+∠CMN=90° ,∠2+∠6=90° ,
∴∠6=∠CMN ,
又 ∵∠5=∠CMN ,
∴∠5= ∠6 ,
∴ AM=AE=BF .
∵∠BCD=90° ,AN⊥BC,垂足為 N,
∴AN∥CD,
∵AD∥BC∴四邊形ADCN是平行四邊形,
∵∠BCD=90°,AD=CD
∴ ADCN 為正方形,△ ABC為等腰直角三角形,
∴ AB=AC .
在△ ACM與△ ABF 中,
,
∴△ACM ≌△ABF(SAS),
∴ CM=AF ;
⑵ 結(jié)論②正確.理由如下:
∵△ACM ≌△ABF ,
∴∠2=∠4 ,
∵∠2+∠6=90° ,
∴∠4+∠6=90° ,
∴ CE⊥AF ;
⑶ 結(jié)論③正確.理由如下:
證法一: ∵CE⊥AF ,
∴∠ADC+∠AGC=180° ,
∴ A 、D 、C 、G 四點(diǎn)共圓,
∴∠7=∠2 ,
∵∠2=∠4 ,
∴∠7=∠4 ,
又 ∵∠DAH=∠B=45° ,
∴△ABF∽△DAH ;
證法二: ∵ CE⊥AF, ∠1=∠2 ,
∴△ACF為等腰三角形,AC=CF,點(diǎn)G為AF中點(diǎn).
在 Rt△ANF中,點(diǎn)G為斜邊AF中點(diǎn),
∴ NG=AG ,
∴∠MNG=∠3 ,
∴∠DAG=∠CNG .
在△ADG與△NCG 中,
,
∴△ADG≌△NCG ( SAS),
∴∠7=∠1 ,
又 ∵∠1=∠2=∠4 ,
∴∠7=∠4 ,
又 ∵∠DAH=∠B=45° ,
∴△ABF∽△DAH ;
⑷ 結(jié)論④正確.理由如下:
證法一: ∵ A、D、C、G 四點(diǎn)共圓,
∴∠DGC=∠DAC=45° , ∠DGA=∠DCA=45° ,
∴∠DGC=∠DGA ,即GD平分∠AGC .
證法二: ∵ AM=AE ,CE⊥AF ,
∴∠3=∠4 ,又 ∠2=∠4 , ∴∠3=∠2
則 ∠CGN=180°-∠ 1- 90°-∠MNG=180°﹣∠1﹣90°﹣∠3=90°-∠1-∠2=45° .
∵△ADG ≌△NCG ,
∴∠DGA=∠CGN=45°=∠AGC ,
∴ GD平分∠AGC .
綜上所述,正確的結(jié)論是:①②③④,共 4 個(gè).
故答案為: ①②③④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)O與平面直角坐標(biāo)系的原點(diǎn)重合,點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B的坐標(biāo)為(-5,4),點(diǎn)D為邊BC上一點(diǎn),連接OD,若線段OD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°后,點(diǎn)O恰好落在AB邊上的點(diǎn)E處,則點(diǎn)E的坐標(biāo)為( )
A. (-5,3) B. (-5,4) C. (-5,) D. (-5,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】文化是一個(gè)國(guó)家、一個(gè)民族的靈魂,近年來(lái),央視推出《中國(guó)詩(shī)詞大會(huì)》、《中國(guó)成語(yǔ)大會(huì)》、《朗讀者》、《經(jīng)曲詠流傳》等一系列文化欄目.為了解學(xué)生對(duì)這些欄目的喜愛(ài)情況,某學(xué)校組織學(xué)生會(huì)成員隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,被調(diào)查的學(xué)生必須從《經(jīng)曲詠流傳》(記為A)、《中國(guó)詩(shī)詞大會(huì)》(記為B)、《中國(guó)成語(yǔ)大會(huì)》(記為C)、《朗讀者》(記為D)中選擇自己最喜愛(ài)的一個(gè)欄目,也可以不選以上四類(lèi)而寫(xiě)出一個(gè)自己最喜愛(ài)的其他文化欄目(這時(shí)記為E).根據(jù)調(diào)查結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)在這項(xiàng)調(diào)查中,共調(diào)查了 名學(xué)生;
(2)最喜愛(ài)《朗讀者》的學(xué)生有 名;
(3)扇形統(tǒng)計(jì)圖中“B”所在扇形圓心角的度數(shù)為 ;
(4)選擇“E”的學(xué)生中有2名女生,其余為男生,現(xiàn)從選擇“E”的學(xué)生中隨機(jī)選出兩名學(xué)生參加座談,請(qǐng)直接寫(xiě)出:剛好選到一名男生和一名女生的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:
材料一:對(duì)實(shí)數(shù)a、b,定義的含義為:當(dāng)時(shí),;當(dāng)時(shí),.例如:;.
材料二:關(guān)于數(shù)學(xué)家高斯的故事,200多年前,高斯的算術(shù)老師提出了下面的問(wèn):據(jù)說(shuō),當(dāng)其他同學(xué)忙于把100個(gè)數(shù)逐項(xiàng)相加時(shí),十歲的高斯卻用下面的方法迅速算出了正確答案:.也可以這樣理解:令①,則②,①+②:,即.
根據(jù)以上材料,回答下列問(wèn)題:
(1)已知,且,求的值;
(2)已知,且,化簡(jiǎn):;
(3)對(duì)于正數(shù)m,有,求…+的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】提出問(wèn)題
若矩形的面積為9,則該矩形的周長(zhǎng)有無(wú)最大值或最小值?若有,最大(。┲凳嵌嗌伲
分析問(wèn)題
若設(shè)該矩形的長(zhǎng)為,則矩形的寬為,若周長(zhǎng)為,則與的函數(shù)關(guān)系式為,問(wèn)題就轉(zhuǎn)化為研究該函數(shù)的最值問(wèn)題.
解決問(wèn)題
“數(shù)學(xué)興趣小組”對(duì)函數(shù)的最值問(wèn)題進(jìn)行了探究,探究過(guò)程如下:
(1)填寫(xiě)下表,并用描點(diǎn)法在坐標(biāo)系中畫(huà)出函數(shù)的圖象,
1 | 2 | 3 | 4 | 5 | |||
20 | 12 |
其中__________;
(2)觀察該函數(shù)的圖象,當(dāng)__________時(shí),函數(shù)有最__________值(填“大”或“小”),其最值是__________;
(3)在求二次函數(shù)的最大(。┲禃r(shí),我們可以通過(guò)配方的形式將函數(shù)表達(dá)式變?yōu)轫旤c(diǎn)式求出最值,同樣函數(shù)也可以通過(guò)配方求最值:
當(dāng)時(shí),即時(shí),.
請(qǐng)類(lèi)比上面配方法,驗(yàn)證我們對(duì)該函數(shù)的最值的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, AB 是 ⊙ O 的直徑, C 是的中點(diǎn), CE ⊥ AB 于 E , BD 交 CE 于 F .
(1)求證: CF=BF ;
(2)若 CD=6 ,AC=8 ,求 BE 、 CF 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐
問(wèn)題情境:在綜合與實(shí)踐課上,老師讓同學(xué)們以“兩個(gè)大小不等的等腰直角三角板的直角頂點(diǎn)重合,并讓一個(gè)三角板固定,另一個(gè)繞直角頂點(diǎn)旋轉(zhuǎn)”為主題開(kāi)展數(shù)學(xué)活動(dòng),如圖1,三角板和三角板都是等腰直角三角形,,點(diǎn),分別在邊,上,連接,點(diǎn),,分別為,,的中點(diǎn).試判斷線段與的數(shù)量關(guān)系和位置關(guān)系.
探究展示:勤奮小組發(fā)現(xiàn),,.并展示了如下的證明方法:
∵點(diǎn),分別是,的中點(diǎn),∴,.
∵點(diǎn),分別是,的中點(diǎn),∴,.(依據(jù)1)
∵,,∴,∴.
∵,∴.
∵,∴.
∵,∴.(依據(jù)2)
∴.∴.
反思交流:
(1)①上述證明過(guò)程中的“依據(jù)1”,“依據(jù)2”分別是指什么?
②試判斷圖1中,與的位置關(guān)系,請(qǐng)直接回答,不必證明;
(2)創(chuàng)新小組受到勤奮小組的啟發(fā),繼續(xù)進(jìn)行探究,把繞點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)到如圖2的位置,發(fā)現(xiàn)是等腰直角三角形,請(qǐng)你給出證明;
(3)縝密小組的同學(xué)繼續(xù)探究,把繞點(diǎn)在平面內(nèi)自由旋轉(zhuǎn),當(dāng),時(shí),求面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】全球已經(jīng)進(jìn)入大數(shù)據(jù)時(shí)代,大數(shù)據(jù)(bigdata),是指數(shù)據(jù)規(guī)模巨大,類(lèi)型多樣且信息傳播速度快的數(shù)據(jù)庫(kù)體系.大數(shù)據(jù)在推動(dòng)經(jīng)濟(jì)發(fā)展,改善公共服務(wù)等方面日益顯示出巨大的價(jià)值.為創(chuàng)建大數(shù)據(jù)應(yīng)用示范城市,我市某機(jī)構(gòu)針對(duì)市民最關(guān)心的四類(lèi)生活信息進(jìn)行了民意調(diào)查(被調(diào)查者每人限選一項(xiàng)),下面是部分四類(lèi)生活信息關(guān)注度統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖中提供的信息解答下列問(wèn)題:
(1)本次參與調(diào)查的人數(shù)是 ,扇形統(tǒng)計(jì)圖中D部分的圓心角的度數(shù)是 ;
(2)關(guān)注城市醫(yī)療信息的有多少人?并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)寫(xiě)出兩條你從統(tǒng)計(jì)圖中獲取的信息.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C的坐標(biāo)為(m,0)(m>0),點(diǎn)D(m,1)在BC上,將矩形OABC沿AD折疊壓平,使點(diǎn)B的對(duì)應(yīng)點(diǎn)E落在坐標(biāo)平面內(nèi),當(dāng)△ADE是等腰直角三角形時(shí),點(diǎn)E的坐標(biāo)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com