【題目】十一黃金周期間,各地景區(qū)游人如織,其中淮安動物園在930日的游客人數(shù)為1萬人,接下來的七天假期中每天接待的游客人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負(fù)數(shù)表示比前一天少的人數(shù)).

日期

101

102

103

104

105

106

107

人數(shù)變化

(單位:萬人)

1)請根據(jù)計算判斷七天內(nèi)游客人數(shù)最多的是哪天,有多少萬人?

2)若以930日的游客人數(shù)1萬人為標(biāo)準(zhǔn),每人門票均為10元,問黃金周期間淮安動物園平均每天門票多收入多少萬元?

【答案】1)旅游人數(shù)最多的一天是103日,達(dá)到3.4萬人;(2)平均每天門票多收入萬元.

【解析】

1)分別計算每一天的人數(shù)后,做出判斷即可,
2)求出這七天的旅游總?cè)藬?shù),再求出總價即可,求出平均每天的收入減去930日的門票收入即可.

解:(1101日:2.2萬人;102日:3萬人;103日:3.4萬人;104日:3萬人;105日:2.4萬人;106日:2.6萬人;107日:1.2萬人;
答:旅游人數(shù)最多的一天是103日,達(dá)到3.4萬人.
2)黃金周期間總收入為:10×2.233.432.42.61.2)=178萬元,

(萬元)

答:平均每天門票多收入萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,,結(jié)論:①;②;③;④,其中正確的是有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊三角形邊上的一點,點邊上的一點,連接為邊作等邊三角形連接

如圖1,當(dāng)點與點重合時,

找出圖中的一對全等三角形,并證明;

;

如圖2,若請計算的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A點的坐標(biāo)為(a,6),ABx軸于點B,cosOAB═,反比例函數(shù)y=的圖象的一支分別交AO、AB于點C、D.延長AO交反比例函數(shù)的圖象的另一支于點E.已知點D的縱坐標(biāo)為

(1)求反比例函數(shù)的解析式;

(2)求直線EB的解析式;

(3)求SOEB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線x=1的拋物線y=x2﹣bx+cx軸交于A(x1,0)、B(x2,0)(x1<x2)兩點,與y軸交于C點,且+=﹣

(1)求拋物線的解析式;

(2)拋物線頂點為D,直線BDy軸于E點;

①設(shè)點P為線段BD上一點(點P不與B、D兩點重合),過點Px軸的垂線與拋物線交于點F,求BDF面積的最大值;

②在線段BD上是否存在點Q,使得∠BDC=QCE?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MON=90,A是∠MON內(nèi)部的一點,過點AAB⊥ON,垂點為點B,AB=3厘米,OB=4厘米,動點E、F同時從O點出發(fā),點E1.5厘米/秒的速度沿ON方向運動,點F2厘米/秒的速度沿OM方向運動,EFOA交于點C,連接AE,當(dāng)點E到達(dá)點B時,點F隨之停止運動。設(shè)運動時間為t秒(t>0)。

(1)當(dāng)t=1秒時,ΔEOF與ΔABO是否相似?請說明理由。

(2)在運動過程中,不論t取何值時,總有EF⊥OA,為什么?

3)連接AF,在運動過程中,是否存在某一時刻t,使得SΔAEF=S四邊形ABOF ?若存在,請求出此時t的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OP平分∠MON,A是邊OM上一點,以點A為圓心、大于點AON的距離為半徑作弧,交ON于點B、C,再分別以點B、C為圓心,大于BC的長為半徑作弧,兩弧交于點D、作直線AD分別交OP、ON于點E、F.若∠MON=60°,EF=1,則OA=__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

19(3x2)(3x2)

2)(1x)(1x)

3)(a2b1)(a2b1)

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有實數(shù)根.

(1)求k的取值范圍;

(2)若此方程的兩實數(shù)根x1,x2滿足x12+x22=11,求k的值.

查看答案和解析>>

同步練習(xí)冊答案