【題目】如圖,∠A=2∠C,BD平分∠ABC,BC=8,AB=5,則AD=________
【答案】3
【解析】
在BC上截取BE=AB,利用“邊角邊”證明△ABD和△BED全等,根據(jù)全等三角形對應邊相等可得DE=AD,全等三角形對應角相等可得∠BED=∠A,然后求出∠C=∠CDE,根據(jù)等角對等邊可得CE=DE,等量代換得到EC=AD,即得答案BC=BE+EC=AB+AD,再代入數(shù)據(jù)即可求解.
(1)在BC上截取BE=BA,如圖,
∵BD平分∠ABC,
∴∠ABD=∠EBD,
在△ABD和△BED中,
,
∴△ABD≌△BED,
∴DE=AD,∠BED=∠A,
又∵∠A=2∠C,
∴∠BED=∠C+∠EDC=2∠C,
∴∠EDC=∠C,
∴ED=EC,
∴EC=AD
∴BC=BE+EC=AB+AD,
∵BC=8,AB=5,
∴AD=BC-AB=8-5=3.
故答案為:3.
科目:初中數(shù)學 來源: 題型:
【題目】來自某綜合市場財務部的報告表明,商場2014年1﹣4月份的投資總額一共是2065萬元,商場2014年第一季度每月利潤統(tǒng)計圖和2014年1﹣4月份利潤率統(tǒng)計圖如下(利潤率=利潤÷投資金額).則商場2014年4月份利潤是__萬元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如下圖,先填空后證明.
已知: ∠1+∠2=180° 求證:a∥b.
證明:∵ ∠1=∠3(_____),∠1+∠2=180°(_____),
∴ ∠3+∠2=180°(______).
∴ a∥b(_____).
請你再寫出一種證明方法.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的邊長為4,D是線段BA延長線上的一點,以線段CD為邊向CD的左側(cè)作等邊△CDE,連接AE.
(1)△ABC的面積S△ABC= ;
(2)求證:△ACE≌△BCD;
(3)若四邊形ABCE的面積為10,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“珍重生命,注意安全!”同學們在上下學途中一定要注意騎車安全.小明騎單車上學,當他騎了一段時間,想起要買某本書,于是又折回到剛經(jīng)過的新華書店,買到書后繼續(xù)去學校,以下是他本次所用的時間與路程的關系示意圖.根據(jù)圖中提供的信息回答下列問題:
(1)小明家到學校的路程是 米,小明在書店停留了 分鐘
(2)本次上學途中,小明一共行駛了 米,一共用了 分鐘.
(3)我們認為騎單車的速度超過300米分鐘就超越了安全限度.問:在整個上學的途中哪個時間段小明騎車速度最快,速度在安全限度內(nèi)嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABC 的頂點 A (-2,0),點 B,C分別在x軸和y軸的正半軸上,∠ACB=90°,∠BAC=60°
(1)求點 B 的坐標;
(2)點 P 為 AC延長線上一點,過 P 作PQ∥x軸交 BC 的延長線于點 Q ,若點 P 的橫坐標為t,線段PQ的長為d,請用含t的式子表示d;
(3) 在(2)的條件下,當PA=d時,E是線段CQ上一點,連接OE,BP,若OE=BP,求∠APB-∠OEB的度數(shù)..
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖為長方形紙帶,AD平行BC,E、F分別是邊AD、BC上一點,∠DEF=α,α為銳角且α≠60°,將紙帶沿EF折疊如圖(1),再由GF折疊如圖(2),若GP平分∠MGF交直線EF于點P,則∠GPE=_____(含α的式子表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com