【題目】如圖,∠A=2C,BD平分∠ABCBC=8,AB=5,則AD=________

【答案】3

【解析】

BC上截取BE=AB,利用邊角邊證明ABDBED全等,根據(jù)全等三角形對應邊相等可得DE=AD,全等三角形對應角相等可得∠BED=A,然后求出∠C=CDE,根據(jù)等角對等邊可得CE=DE,等量代換得到EC=AD,即得答案BC=BE+EC=AB+AD,再代入數(shù)據(jù)即可求解.

1)在BC上截取BE=BA,如圖,

BD平分∠ABC,

∴∠ABD=EBD,

ABDBED中,

,

∴△ABD≌△BED,

DE=AD,∠BED=A,

又∵∠A=2C

∴∠BED=C+EDC=2C,

∴∠EDC=C

ED=EC,

EC=AD

BC=BE+EC=AB+AD

BC=8,AB=5,

AD=BC-AB=8-5=3.

故答案為:3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】來自某綜合市場財務部的報告表明,商場201414月份的投資總額一共是2065萬元,商場2014年第一季度每月利潤統(tǒng)計圖和201414月份利潤率統(tǒng)計圖如下(利潤率=利潤÷投資金額).則商場20144月份利潤是__萬元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如下圖,先填空后證明.

已知: ∠1+∠2=180° 求證:a∥b.

證明:∵ ∠1=∠3_____,∠1+∠2=180°_____,

∴ ∠3+∠2=180°______.

∴ a∥b_____.

請你再寫出一種證明方法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊ABC的邊長為4D是線段BA延長線上的一點,以線段CD為邊向CD的左側(cè)作等邊CDE,連接AE

1ABC的面積SABC   ;

2)求證:ACE≌△BCD;

3)若四邊形ABCE的面積為10,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠ACB=90°AC=AN,BC=BM,則∠MCN=( )

A. 30°B. 45°C. 60°D. 55°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】珍重生命,注意安全!”同學們在上下學途中一定要注意騎車安全.小明騎單車上學,當他騎了一段時間,想起要買某本書,于是又折回到剛經(jīng)過的新華書店,買到書后繼續(xù)去學校,以下是他本次所用的時間與路程的關系示意圖.根據(jù)圖中提供的信息回答下列問題:

(1)小明家到學校的路程是 米,小明在書店停留了 分鐘

(2)本次上學途中,小明一共行駛了 米,一共用了 分鐘.

(3)我們認為騎單車的速度超過300米分鐘就超越了安全限度.問:在整個上學的途中哪個時間段小明騎車速度最快,速度在安全限度內(nèi)嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,ABC 的頂點 A (-2,0), B,C分別在x軸和y軸的正半軸上,ACB=90°,BAC=60°

(1)求點 B 的坐標;

(2) P AC延長線上一點,過 P PQx軸交 BC 的延長線于點 Q ,若點 P 的橫坐標為t,線段PQ的長為d,請用含t的式子表示d;

(3) 在(2)的條件下,當PA=d時,E是線段CQ上一點,連接OE,BP,若OE=BP,求∠APB-OEB的度數(shù)..

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形中,上的一點,連接,過點作,垂足為點,延長于點,連接.

(1)求證:.

(2)若正方形邊長是5,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖為長方形紙帶,AD平行BC,EF分別是邊AD、BC上一點,∠DEFα,α為銳角且α60°,將紙帶沿EF折疊如圖(1),再由GF折疊如圖(2),若GP平分∠MGF交直線EF于點P,則∠GPE_____(含α的式子表示)

查看答案和解析>>

同步練習冊答案