【題目】如圖,直線AB是某天然氣公司的主輸氣管道,點(diǎn)C、D是在AB異側(cè)的兩個(gè)小區(qū),現(xiàn)在主輸氣管道上尋找支管道連接點(diǎn),向兩個(gè)小區(qū)鋪設(shè)管道有以下兩個(gè)方案:
方案一:只取一個(gè)連接點(diǎn)P,使得像兩個(gè)小區(qū)鋪設(shè)的支管道總長度最短,在圖中標(biāo)出點(diǎn)P的位置,保留畫圖痕跡;
方案二:取兩個(gè)連接點(diǎn)M和N,使得點(diǎn)M到C小區(qū)鋪設(shè)的支管道最短,使得點(diǎn)N到D小區(qū)鋪設(shè)的管道最短在途中標(biāo)出M、N的位置,保留畫圖痕跡;
設(shè)方案一中鋪設(shè)的支管道總長度為L1,方案二中鋪設(shè)的支管道總長度為,則L1與L2的大小關(guān)系為: L1_____ L2(填”、”或)理由是______.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A為x軸負(fù)半軸上一點(diǎn),點(diǎn)B為x軸正半軸上一點(diǎn),C(0,a),D(b,a),其中a,b滿足關(guān)系式:|a+3|+(b-a+1)2=0.
(1)a=___,b=___,△BCD的面積為______;
(2)如圖2,若AC⊥BC,點(diǎn)P線段OC上一點(diǎn),連接BP,延長BP交AC于點(diǎn)Q,當(dāng)∠CPQ=∠CQP時(shí),求證:BP平分∠ABC;
(3)如圖3,若AC⊥BC,點(diǎn)E是點(diǎn)A與點(diǎn)B之間一動(dòng)點(diǎn),連接CE,CB始終平分∠ECF,當(dāng)點(diǎn)E在點(diǎn)A與點(diǎn)B之間運(yùn)動(dòng)時(shí),的值是否變化?若不變,求出其值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線AB∥CD.
(1)如圖1,直接寫出∠BME、∠E、∠END的數(shù)量關(guān)系為 ;
(2)如圖2,∠BME與∠CNE的角平分線所在的直線相交于點(diǎn)P,試探究∠P與∠E之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,∠ABM=∠MBE,∠CDN=∠NDE,直線MB、ND交于點(diǎn)F,則 = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們提供如下定理:在直角三角形中,30°的銳角所對的直角邊是斜邊的一半,
如圖(1),Rt△ABC中,∠C=90°,∠A=30°,則BC=AB.
請利用以上定理及有關(guān)知識(shí),解決下列問題:
如圖(2),邊長為6的等邊三角形ABC中,點(diǎn)D從A出發(fā),沿射線AB方向有A向B運(yùn)動(dòng)點(diǎn)F同時(shí)從C出發(fā),以相同的速度沿著射線BC方向運(yùn)動(dòng),過點(diǎn)D作DE⊥AC,DF交射線AC于點(diǎn)G.
(1)當(dāng)點(diǎn)D運(yùn)動(dòng)到AB的中點(diǎn)時(shí),直接寫出AE的長;
(2)當(dāng)DF⊥AB時(shí),求AD的長及△BDF的面積;
(3)小明通過測量發(fā)現(xiàn),當(dāng)點(diǎn)D在線段AB上時(shí),EG的長始終等于AC的一半,他想當(dāng)點(diǎn)D運(yùn)動(dòng)到圖3的情況時(shí),EG的長始終等于AC的一半嗎?若改變,說明理由;若不變,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明
如圖,點(diǎn)E在直線DF上,點(diǎn)B在直線AC上,若∠AGB=∠EHF,∠C=∠D.
求證:∠A=∠F.
證明:∵∠AGB=∠EHF
∠AGB=___________(對頂角相等)
∴∠EHF=∠DGF
∴DB∥EC(____________________________________)
∴∠_________=∠DBA(________________________________)
又∵∠C=∠D
∴∠DBA=∠D
∴DF∥_______(__________________________________)
∴∠A=∠F(__________________________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是甲、乙兩種機(jī)器人根據(jù)電腦程序工作時(shí)各自工作量y關(guān)于工作時(shí)間t的函數(shù)圖象,線段OA表示甲機(jī)器人的工作量y1(噸)關(guān)于時(shí)間x(時(shí))的函數(shù)圖象,線段BC表示乙機(jī)器人的工作量y2(噸)關(guān)于時(shí)間a(時(shí))的函數(shù)圖象,根據(jù)圖象信息回答下列填空題.
(1) 甲種機(jī)器人比乙種機(jī)器人早開始工作___ 小時(shí),甲種機(jī)器人每小時(shí)的工作量是___噸.
(2)直線BC的表達(dá)式為 ,當(dāng)乙種機(jī)器人工作5小時(shí)后,它完成的工作量是 噸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘船以每小時(shí)30海里的速度向北偏東75°方向航行,在點(diǎn)A處測得碼頭C在船的東北方向,航行40分鐘后到達(dá)B處,這時(shí)碼頭C恰好在船的正北方向,在船不改變航向的情況下,求出船在航行過程中與碼頭C的最近距離.(結(jié)果精確到0.1海里,參考數(shù)據(jù) ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn) A 在 y 軸正半軸上點(diǎn) B 在 x 軸負(fù)半軸上,且 AB=2,∠BAO=15°,點(diǎn) P 是線段OA 上的一個(gè)動(dòng)點(diǎn),則 PB PA 的最小值為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線l:y=mx﹣m+1(m為常數(shù),且m≠0)與坐標(biāo)軸交于A、B兩點(diǎn),若△AOB(O是原點(diǎn))的面積恰為2,則符合要求的直線l有( )
A.1條
B.2條
C.3條
D.4條
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com