【題目】如圖,為上一點(diǎn),點(diǎn)在直徑的延長線上,
求證:是的切線;
過點(diǎn)作的切線交的延長線于點(diǎn).若依題意補(bǔ)全圖形并求的長
【答案】(1)見解析;(2)補(bǔ)全圖形見解析,DE=
【解析】
(1)連結(jié)OD,根據(jù)圓周角定理得到∠ADO+∠ODB=90°,而∠CDA=∠CBD,∠CBD=∠ODB,于是∠CDA+∠ADO=90°;
(2)根據(jù)切線的性質(zhì)得到ED=EB,OE⊥BD,推出AD∥OE,∠OEB=∠ADC,即可解決問題;
解:(1)證明:如圖,連接OD,
∵AB為直徑,
∴∠ADB=90°,即∠ADO+∠ODB=90°,
又∵∠CDA=∠CBD,
而∠CBD=∠ODB,
∴∠ODB =∠CDA,
∴∠CDA+∠ADO=90°,即∠CDO=90°,
∴CD是⊙O的切線;
(2)如圖所示,連接EO.
∵EB為⊙O的切線,ED為切線,
∴∠OED=∠OEB,BE=DE,
∵AD⊥BD,OE⊥BD,
∴AD∥OE,
∴∠CDA=∠OED=∠OEB,
∴tan∠OEB=,
∵AB=6,
∴OB=3,
∴BE=DE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)和,以下結(jié)論:①,②,③,④當(dāng)時(shí),.其中正確的結(jié)論的個(gè)數(shù)是( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)工程隊(duì)共同參與一項(xiàng)筑路工程,甲隊(duì)單獨(dú)施工3個(gè)月,這時(shí)增加了乙隊(duì),兩隊(duì)又共同工作了2個(gè)月,總工程全部完成,已知甲隊(duì)單獨(dú)完成全部工程比乙隊(duì)單獨(dú)完成全部工程多用2個(gè)月,設(shè)甲隊(duì)單獨(dú)完成全部工程需個(gè)月,則根據(jù)題意可列方程中錯(cuò)誤的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一把直尺,的直角三角板和光盤如圖擺放,為角與直尺交點(diǎn),,則光盤的直徑是( )
A. 3 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線:與軸交于兩點(diǎn)(在的左側(cè)),與軸交于點(diǎn).
(1)求拋物線的解析式及兩點(diǎn)的坐標(biāo);
(2)求拋物線的頂點(diǎn)坐標(biāo);
(3)將拋物線向上平移3個(gè)單位長度,再向右平移個(gè)單位長度,得到拋物線.①若拋物線的頂點(diǎn)在內(nèi),求的取值范圍;②若拋物線與線段只有一個(gè)交點(diǎn),直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,且,,若為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直.則稱該矩形為點(diǎn)的相關(guān)矩形".下圖為點(diǎn)的“相關(guān)矩形”的示意圖.
已知點(diǎn)的坐標(biāo)為.
若點(diǎn)的坐標(biāo)為,求點(diǎn)的“相關(guān)矩形”的周長;
點(diǎn)在直線上,若點(diǎn)的“相關(guān)矩形”為正方形,已知拋物線經(jīng)過點(diǎn)和點(diǎn),求拋物線與軸的交點(diǎn)的坐標(biāo);
的半徑為,點(diǎn)是直線上的從左向右的一個(gè)動(dòng)點(diǎn).若在上存在一點(diǎn)使得點(diǎn)的“相關(guān)矩形”為正方形,直接寫出動(dòng)點(diǎn)的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AD經(jīng)過⊙O上的點(diǎn)A,△ABC為⊙O的內(nèi)接三角形,并且∠CAD=∠B.
(1)判斷直線AD與⊙O的位置關(guān)系,并說明理由;
(2)若∠CAD=30°,⊙O的半徑為1,求圖中陰影部分的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx-3的圖象與x軸相交于A(-1,0),B(3,0)兩點(diǎn).與y軸相交于點(diǎn)C
(1)求這個(gè)二次函數(shù)的解析式.
(2)若P是第四象限內(nèi)這個(gè)二次函數(shù)的圖象上任意一點(diǎn),PH⊥x軸于點(diǎn)H,與BC交于點(diǎn)M,請問:當(dāng)點(diǎn)P的坐標(biāo)為多少時(shí),線段PM的長最大?并求出這個(gè)最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有大小兩種貨車,輛大貨車與輛小火車一次可以運(yùn)貨噸,輛大貨車與輛小貨車一次可以運(yùn)貨噸.
(1)求輛大貨車和輛小貨車一次可以分別運(yùn)多少噸;
(2)現(xiàn)有噸貨物需要運(yùn)輸,貨運(yùn)公司擬安排大小貨車共輛把全部貨物一次運(yùn)完.求至少需要安排幾輛大貨車?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com