【題目】如圖所示,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn),點(diǎn)M是AB邊上一動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交射線CD于點(diǎn)N,連接MD,AN.

(1)求證:四邊形AMDN是平行四邊形;

(2)①當(dāng)AM為何值時(shí),四邊形AMDN是矩形?

②當(dāng)AM為何值時(shí),四邊形AMDN是菱形?

【答案】(1)見(jiàn)解析;(2)①當(dāng)AM=1時(shí),四邊形AMDN是矩形,②當(dāng)AM=2時(shí),四邊形AMDN是菱形.

【解析】試題分析:1)利用菱形的性質(zhì)可得NDAM根據(jù)平行線的性質(zhì)可得NDE=MAE,DNE=AME,利用AAS證明NDE≌△MAE,根據(jù)全等三角形的性質(zhì)可得ND=MA,由一組對(duì)邊平行且相等的四邊形為平行四邊形即可的四邊形AMDN是平行四邊形;(2)①有(1)可知四邊形AMDN是平行四邊形,利用有一個(gè)角為直角的平行四邊形為矩形即∠DMA=90°,所以AM=AD=1時(shí)即可;②當(dāng)平行四邊形AMND的鄰邊AM=DM時(shí),四邊形為菱形,利用已知條件再證明AMD是等邊三角形即可.

試題解析:

(1)證明:∵四邊形ABCD是菱形,

∴ND∥AM

∴∠NDE=∠MAE,∠DNE=∠AME.

又∵點(diǎn)EAD邊的中點(diǎn),

∴DE=AE

∴△NDE≌△MAE,

∴ND=MA,

∴四邊形AMDN是平行四邊形.

(2)①當(dāng)AM=1時(shí),四邊形AMDN是矩形.

理由如下:

∵四邊形ABCD是菱形,

∴AB=AD=2.

當(dāng)AM=1=AD時(shí),可得∠ADM=30°.

∵∠DAM=60°

∴∠AMD=90°,

∴平行四邊形AMDN是矩形.

②當(dāng)AM=2時(shí),四邊形AMDN是菱形.

理由如下:

∵四邊形ABCD是菱形

∴AB=AD=2.

∵AM=2,

∴AM=AD=2,

又∠DAM=60°

∴△AMD是等邊三角形,

∴AM=DM

∴平行四邊形AMDN是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文具商店銷售功能相同的兩種品牌的計(jì)算器,購(gòu)買2個(gè)A品牌和3個(gè)B品牌的計(jì)算器共需156元;購(gòu)買3個(gè)A品牌和1個(gè)B品牌的計(jì)算器共需122元。

1)求這兩種品牌計(jì)算器的單價(jià);

2)學(xué)校開學(xué)前夕,該商店對(duì)這兩種計(jì)算器開展了促銷活動(dòng),具體辦法如下:A品牌計(jì)算器按原價(jià)的八折銷售,B品牌計(jì)算器5個(gè)以上超出部分按原價(jià)的七折銷售。設(shè)購(gòu)買個(gè)x個(gè)A品牌的計(jì)算器需要1元,購(gòu)買個(gè)B品牌的計(jì)算器需要2元,分別求出1、y2關(guān)于的函數(shù)關(guān)系式;

3)小明準(zhǔn)備聯(lián)系一部分同學(xué)集體購(gòu)買同一品牌的計(jì)算器,若購(gòu)買計(jì)算器的數(shù)量超過(guò)5個(gè),購(gòu)買哪種品牌的計(jì)算器更合算?請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)積極倡導(dǎo)陽(yáng)光體育運(yùn)動(dòng),提高中學(xué)生身體素質(zhì),開展跳繩比賽,下表為該校6140人參加跳繩比賽的情況,若標(biāo)準(zhǔn)數(shù)量為每人每分鐘100個(gè).

1)求6140人一分鐘內(nèi)平均每人跳繩多少個(gè)?

2)規(guī)定跳繩超過(guò)標(biāo)準(zhǔn)數(shù)量,每多跳1個(gè)繩加3分;規(guī)定跳繩未達(dá)到標(biāo)準(zhǔn)數(shù)量,每少跳1個(gè)繩,扣1分,若班級(jí)跳繩總積分超過(guò)250分,便可得到學(xué)校的獎(jiǎng)勵(lì),通過(guò)計(jì)算說(shuō)明61班能否得到學(xué)校獎(jiǎng)勵(lì)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D、E分別在ABC的邊ACBC上,∠C=90°,DEAB,且3DE=2AB,AE=13,BD=9,那么AB的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC,A=640,ABC和∠ACD的平分線交于點(diǎn)A1,得∠A1;∠A1BC和∠A1CD的平分線交于點(diǎn)A2,得∠A2;∠A2BC和∠A2CD的平分線交于點(diǎn)A3,則∠A5= ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,點(diǎn)D,F(xiàn)分別是AC,AB的中點(diǎn),CE∥DB,BE∥DC,AD=3,DF=1,四邊形DBEC面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD是正方形,AC與BD,相交于點(diǎn)O,點(diǎn)E、F是直線AD上兩動(dòng)點(diǎn),且AE=DF,CF所在直線與對(duì)角線BD所在直線交于點(diǎn)G,連接AG,直線AG交BE于點(diǎn)H.

(1)如圖1,當(dāng)點(diǎn)E、F在線段AD上時(shí),求證:∠DAG=∠DCG;

(2)如圖1,猜想AG與BE的位置關(guān)系,并加以證明;

(3)如圖2,在(2)條件下,連接HO,試說(shuō)明HO平分∠BHG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車從A城出發(fā)勻速行駛至B城,在整個(gè)行駛過(guò)程中,甲、乙兩車離開A城的距離ykm)與行駛的時(shí)間th)之間的函數(shù)關(guān)系如圖所示.

1)求乙車離開A城的距離y關(guān)于t的函數(shù)解析式;

2)求乙車的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說(shuō)法:①a>0 ②2a+b=0 ③a+b+c>0 ④當(dāng)﹣1<x<3時(shí),y>0,其中正確的個(gè)數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案