【題目】甲、乙兩車從A城出發(fā)勻速行駛至B城,在整個(gè)行駛過程中,甲、乙兩車離開A城的距離y(km)與行駛的時(shí)間t(h)之間的函數(shù)關(guān)系如圖所示.
(1)求乙車離開A城的距離y關(guān)于t的函數(shù)解析式;
(2)求乙車的速度.
【答案】(1)乙車離開A城的距離y關(guān)于t的函數(shù)解析式y=100t-100;(2)乙車的速度為100km/h.
【解析】
(1)根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以求得甲、乙相遇點(diǎn)的坐標(biāo),從而可以求出車離開A城的距離y關(guān)于t的函數(shù)解析式
(2)根據(jù)(1)中的函數(shù)解析式,可以得出乙車到達(dá)終點(diǎn)時(shí)的時(shí)間,從而求乙車的速度。
(1)由圖象可得,
甲車的速度為:300÷5=60km/h,
當(dāng)甲車行駛150km時(shí),用的時(shí)間為:150÷60=2.5,
則乙車的函數(shù)圖象過點(diǎn)(1,0),(2.5,150),
設(shè)乙車離開A城的距離y關(guān)于t的函數(shù)解析式y=kt+b,
,得,
即乙車離開A城的距離y關(guān)于t的函數(shù)解析式y=100t-100;
(2)令y=300,
則100t-100=300,
解得,t=4
則乙車的速度為:300÷(4-1)=100km/h.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過點(diǎn)B作⊙O的切線BD,與CA的延長線交于點(diǎn)D,與半徑AO的延長線交于點(diǎn)E,過點(diǎn)A作⊙O的切線AF,與直徑BC的延長線交于點(diǎn)F.
(1)求證:△ACF∽△DAE;
(2)若S△AOC=,求DE的長;
(3)連接EF,求證:EF是⊙O的切線.
【答案】(1) 見解析; (2)3 ;(3)見解析.
【解析】試題分析:(1)根據(jù)圓周角定理得到∠BAC=90°,根據(jù)三角形的內(nèi)角和得到∠ACB=60°根據(jù)切線的性質(zhì)得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到結(jié)論;
(2)根據(jù)S△AOC=,得到S△ACF=,通過△ACF∽△DAE,求得S△DAE=,過A作AH⊥DE于H,解直角三角形得到AH=DH=DE,由三角形的面積公式列方程即可得到結(jié)論;
(3)根據(jù)全等三角形的性質(zhì)得到OE=OF,根據(jù)等腰三角形的性質(zhì)得到∠OFG=(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,過O作OG⊥EF于G,根據(jù)全等三角形的性質(zhì)得到OG=OA,即可得到結(jié)論.
試題解析:(1)證明:∵BC是⊙O的直徑,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°
∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切線,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切線,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;
(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵S△AOC=,∴S△ACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴S△DAE=,過A作AH⊥DE于H,∴AH=DH=DE,∴S△ADE=DEAH=×=,∴DE=;
(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFO,在△AOF與△BOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,過O作OG⊥EF于G,∴∠OAF=∠OGF=90°,在△AOF與△OGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切線.
【題型】解答題
【結(jié)束】
25
【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),四邊形ABCO是矩形,點(diǎn)A,C的坐標(biāo)分別是A(0,2)和C(2,0),點(diǎn)D是對角線AC上一動(dòng)點(diǎn)(不與A,C重合),連結(jié)BD,作DE⊥DB,交x軸于點(diǎn)E,以線段DE,DB為鄰邊作矩形BDEF.
(1)填空:點(diǎn)B的坐標(biāo)為 ;
(2)是否存在這樣的點(diǎn)D,使得△DEC是等腰三角形?若存在,請求出AD的長度;若不存在,請說明理由;
(3)①求證:;
②設(shè)AD=x,矩形BDEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(可利用①的結(jié)論),并求出y的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn),點(diǎn)M是AB邊上一動(dòng)點(diǎn)(不與點(diǎn)A重合),延長ME交射線CD于點(diǎn)N,連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)①當(dāng)AM為何值時(shí),四邊形AMDN是矩形?
②當(dāng)AM為何值時(shí),四邊形AMDN是菱形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以四邊形ABCD的邊AB、AD為邊分別向外側(cè)作等邊三角形ABF和ADE,連接BE、DF.
(1)當(dāng)四邊形ABCD為正方形時(shí)(如圖1),則線段BE與DF的數(shù)量關(guān)系是 .
(2)當(dāng)四邊形ABCD為平行四邊形時(shí)(如圖2),問(1)中的結(jié)論是否還成立?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明用尺規(guī)作圖作△ABC邊AC上的高BH,作法如下:
①分別以點(diǎn)D,E為圓心,大于DE的長為半徑作弧,兩弧交于F;
②作射線BF,交邊AC于點(diǎn)H;
③以B為圓心,BK長為半徑作弧,交直線AC于點(diǎn)D和E;
④取一點(diǎn)K,使K和B在AC的兩側(cè);
所以,BH就是所求作的高. 其中順序正確的作圖步驟是( 。
A. ①②③④ B. ④③②① C. ②④③① D. ④③①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD的邊長AB=3cm,BC=6cm.某一時(shí)刻,動(dòng)點(diǎn)M從A點(diǎn)出發(fā)沿AB方向以1cm/s的速度向B點(diǎn)勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)N從D點(diǎn)出發(fā)沿DA方向以2cm/s的速度向A點(diǎn)勻速運(yùn)動(dòng),問:
(1)經(jīng)過多少時(shí)間,△AMN的面積等于矩形ABCD面積的九分之一?
(2)是否存在時(shí)刻t,使以A,M,N為頂點(diǎn)的三角形與△ACD相似?若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y =ax+b的圖像與反比例函數(shù)y =的圖像交于A(4,﹣2)、B(﹣2,m)兩點(diǎn),與x軸交于點(diǎn)C.
(1)求a,m的值;
(2)請直接寫出不等式ax+b≥的解集;
(3)點(diǎn)P在反比例函數(shù)圖像上,且點(diǎn)P的橫坐標(biāo)為-4,在平面直角坐標(biāo)系中是否存在一點(diǎn)Q,使得以A、B、P、Q為頂點(diǎn)的四邊形為平行四邊形?如果存在,請直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的三個(gè)頂點(diǎn)分別為A(1,2),B(2,5),C(6,1).若函數(shù)y=在第一象限內(nèi)的圖象與△ABC有交點(diǎn),則k的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的對角線、交于點(diǎn),平分交于點(diǎn),,,連接.下列結(jié)論:①;②平分;③;④其中正確的個(gè)數(shù)有( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com