【題目】如圖,在等邊ABC中,PBC上一點(diǎn),DAC上一點(diǎn),且∠APD60°BP2,CD1,則ABC的邊長(zhǎng)為( 。

A.3B.4C.5D.6

【答案】B

【解析】

根據(jù)等邊三角形性質(zhì)求出ABBCAC,∠B=∠C60°,推出∠BAP=∠DPC,即可證得ABP∽△PCD,據(jù)此解答即可,.

∵△ABC是等邊三角形,

ABBCAC,∠B=∠C60°,

∴∠BAP+APB180°60°120°,

∵∠APD60°,

∴∠APB+DPC180°60°120°,

∴∠BAP=∠DPC,

即∠B=∠C,∠BAP=∠DPC,

∴△ABP∽△PCD;

BP2,CD1

AB4,

∴△ABC的邊長(zhǎng)為4

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,雙曲線上的一點(diǎn),其中,過(guò)點(diǎn)軸于點(diǎn),連接.

1)已知的面積是,求的值;

2)將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,且點(diǎn)的對(duì)應(yīng)點(diǎn)恰好落在該雙曲線上,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019930日,由著名導(dǎo)演李仁港執(zhí)導(dǎo)的電影《攀登者》在各大影院上映后,好評(píng)不斷,小亮和小麗都想去觀看這部電影,但是只有一張電影票,于是他們決定采用模球的辦法決定勝負(fù),獲勝者去看電影,游戲規(guī)則如下:在一個(gè)不透明的袋子中裝有編號(hào)1-4的四個(gè)球(除編號(hào)外都相同),從中隨機(jī)摸出一個(gè)球,記下數(shù)字后放回,再?gòu)闹忻鲆粋(gè)球,記下數(shù)字,若兩次數(shù)字之和大于5,則小亮獲勝,若兩次數(shù)字之和小于5,則小麗獲勝.

1)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法表示出隨機(jī)摸球所有可能的結(jié)果;

2)分別求出小亮和小麗獲勝的概率,并判斷這種游戲規(guī)則對(duì)兩人公平嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,有以下結(jié)論:;;;;其中所有正確結(jié)論的序號(hào)是( )

A. ①② B. ①③④ C. ①②③⑤ D. ①②③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線yx與雙曲線yk0)交于A、B兩點(diǎn),A點(diǎn)的橫坐標(biāo)為3,則下列結(jié)論:k6;A點(diǎn)與B點(diǎn)關(guān)于原點(diǎn)O中心對(duì)稱;關(guān)于x的不等式0的解集為x<﹣30x3若雙曲線yk0)上有一點(diǎn)C的縱坐標(biāo)為6,則△AOC的面積為8,其中正確結(jié)論的個(gè)數(shù)( 。

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊ABC中,把ABC沿直線MN翻折,點(diǎn)A落在線段BC上的D點(diǎn)位置(D不與B、C重合),設(shè)∠AMNα

1)用含α的代數(shù)式表示∠MDB和∠NDC,并確定的α取值范圍;

2)若α45°,求BDDC的值;

3)求證:AMCNANBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)雙曲線yk0)與直線yx交于A\B兩點(diǎn)(點(diǎn)A在第三象限),將雙曲線在第一象限的一支沿射線BA的方向平移,使其經(jīng)過(guò)點(diǎn)A,將雙曲線在第三象限的一支沿射線AB的方向平移,使其經(jīng)過(guò)點(diǎn)B,平移后的兩條曲線相交于P、Q兩點(diǎn),此時(shí)我們稱平移后的兩條曲線所圍部分(如圖中陰影部分)為雙曲線的,PQ為雙曲線的眸徑,當(dāng)雙曲線yk0)的眸徑為6時(shí),k的值為( 。

A.B.2C.D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于一元二次方程理解錯(cuò)誤的是( )

A.這個(gè)方程是一元二次方程B.方程的解是

C.這個(gè)方程有兩個(gè)不相等的實(shí)數(shù)根D.這個(gè)方程可以用公式法求解

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在AOB中,∠AOB為直角,OA=6,OB=8,半徑為2的動(dòng)圓圓心Q從點(diǎn)O出發(fā),沿著OA方向以1個(gè)單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿著AB方向也以1個(gè)單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t≤5)以P為圓心,PA長(zhǎng)為半徑的⊙PAB、OA的另一個(gè)交點(diǎn)分別為C、D,連結(jié)CD、QC

(1)當(dāng)t為何值時(shí),點(diǎn)Q與點(diǎn)D重合?

(2)當(dāng)⊙Q經(jīng)過(guò)點(diǎn)A時(shí),求⊙POB截得的弦長(zhǎng).

(3)若⊙P與線段QC只有一個(gè)公共點(diǎn),求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案