【題目】如下圖,,,平分,平分,則( )
A.B.C.D.
【答案】C
【解析】
首先過點(diǎn)E作EM∥AB,過點(diǎn)F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ),由∠BED=110°,即可求得∠ABE+∠CDE=250°,又由BF平分∠ABE,DF平分∠CDE,根據(jù)角平分線的性質(zhì),即可求得∠ABF+∠CDF的度數(shù),又由兩直線平行,內(nèi)錯(cuò)角相等,即可求得∠BFD的度數(shù).
過點(diǎn)E作EM∥AB,過點(diǎn)F作FN∥AB,
∵AB∥CD,
∴EM∥AB∥CD∥FN,
∴∠ABE+∠BEM=180°,∠CDE+∠DEM=180°,
∴∠ABE+∠BED+∠CDE=360°,
∵∠BED=110°,
∴∠ABE+∠CDE=250°,
∵BF平分∠ABE,DF平分∠CDE,
∴∠ABF=∠ABE,∠CDF=∠CDE,
∴∠ABF+∠CDF= (∠ABE+∠CDE)=125°,
∵∠DFN=∠CDF,∠BFN=∠ABF,
∴∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=125°.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx-3(a>0)的圖象與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),與y軸交于點(diǎn)C,且OC=OB=3OA.
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)點(diǎn)D是點(diǎn)C關(guān)于此拋物線對(duì)稱軸的對(duì)稱點(diǎn),直線AD,BC交于點(diǎn)P,試判斷直線AD,BC是否垂直,并證明你的結(jié)論;
(3)在(2)的條件下,若點(diǎn)M,N分別是射線PC,PD上的點(diǎn),問:是否存在這樣的點(diǎn)M,N,使得以點(diǎn)P,M,N為頂點(diǎn)的三角形與△ACP全等?若存在請(qǐng)求出點(diǎn)M,N的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A.有且只有一條直線與已知直線垂直;
B.從直線外一點(diǎn)到這條直線的垂線段,叫做這點(diǎn)到這條直線距離;
C.互相垂直的兩條線段一定相交;
D.直線外一點(diǎn)與直線上各點(diǎn)連接而成的所有線段中,最短線段的長度是,則點(diǎn)到直線的距離是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,點(diǎn)C、D在線段AF上,AD=CD=CF,∠ABC=∠DEF=90°,AB∥EF.
(1)若BC=2,AB=2,求BD的長;
(2)求證:四邊形BCED是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中,,,點(diǎn)為的中點(diǎn),點(diǎn)在線段上以的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合),同時(shí)點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng).
(1)若點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度相等,當(dāng)運(yùn)動(dòng)時(shí)間是時(shí),與是否全等?請(qǐng)說明理由;
(2)若點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度不相等,當(dāng)與全等時(shí),點(diǎn)的運(yùn)動(dòng)時(shí)間是_______________;運(yùn)動(dòng)速度是_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,下列條件不能判定這個(gè)四邊形是平行四邊形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對(duì)角線相交于點(diǎn)O,AC=AB, E是AB邊的中點(diǎn),G、F為 BC上的點(diǎn),連接OG和EF,若AB=13, BC=10,GF=5,則圖中陰影部分的面積為( )
A.48B.36C.30D.24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來測(cè)量操場旗桿AB的高度,他們通過調(diào)整測(cè)量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點(diǎn)A在同一直線上,已知DE=0.5米,EF=0.25米,目測(cè)點(diǎn)D到地面的距離DG=1.5米,到旗桿的水平距離DC=20米,求旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,菱形的頂點(diǎn)在軸上,點(diǎn)在點(diǎn)的左側(cè),點(diǎn)在軸的正半軸上.點(diǎn)的坐標(biāo)為.動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度,按照的順序在菱形的邊上勻速運(yùn)動(dòng)一周,設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)①點(diǎn)的坐標(biāo) .②求菱形的面積.
(2)當(dāng)時(shí),問線段上是否存在點(diǎn),使得最小,如果存在,求出 最小值;如果不存在,請(qǐng)說明理由.
(3)若點(diǎn)到的距離是1,則點(diǎn)運(yùn)動(dòng)的時(shí)間等于 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com