【題目】閱讀理解
在⊙I中,弦AF與DE相交于點(diǎn)Q,則AQQF=DQQE.你可以利用這一性質(zhì)解決問題.
問題解決
如圖,在平面直角坐標(biāo)系中,等邊△ABC的邊BC在x軸上,高AO在y軸的正半軸上,點(diǎn)Q(0,1)是等邊△ABC的重心,過點(diǎn)Q的直線分別交邊AB、AC于點(diǎn)D、E,直線DE繞點(diǎn)Q轉(zhuǎn)動(dòng),設(shè)∠OQD=α(60°<α<120°),△ADE的外接圓⊙I交y軸正半軸于點(diǎn)F,連接EF.
(1)填空:AB= ;
(2)在直線DE繞點(diǎn)Q轉(zhuǎn)動(dòng)的過程中,猜想:與的值是否相等?試說明理由.
(3)①求證:AQ2=ADAE﹣DQQE;
②記AD=a,AE=b,DQ=m,QE=m(a、b、m、n均為正數(shù)),請(qǐng)直接寫出mn的取值范圍.
【答案】(1)2 (2)相等(3)①見詳解;②≤mn≤2.
【解析】
(1)如圖1,連接BQ,由點(diǎn)Q(0,1)是等邊△ABC的重心,得到AQ=BQ=2OQ=2,∠QBO=30°,根據(jù)等邊三角形的性質(zhì)即可得到結(jié)論;
(2)根據(jù)等邊三角形的性質(zhì)得到∠DAF=∠FAE,根據(jù)相似三角形的性質(zhì)得到=,根據(jù)相似三角形的性質(zhì)得到,等量代換即可得到結(jié)論;
(3)①由相似三角形的性質(zhì)得到,根據(jù)線段的和差得到ADAE=(AQ+QF)AQ,化簡(jiǎn)即可得到結(jié)論;②如圖2,過點(diǎn)E作ET⊥AB于T,解直角三角形得到ET=AEsin60°=b,求得S△ADE=ab,當(dāng)α=90°時(shí),此時(shí)DE∥x軸,S△ADE最小,根據(jù)相似三角形的性質(zhì)得到,得到,當(dāng)α=120°時(shí),此時(shí)DE經(jīng)過點(diǎn)C,即點(diǎn)E和點(diǎn)C重合,S△ADE最大,根據(jù)三角形的面積得到≤ab≤6,代入化簡(jiǎn)即可得到結(jié)論.
(1)如圖1,連接BQ,∵點(diǎn)Q(0,1)是等邊△ABC的重心,
∴AQ=BQ=2OQ=2,∠QBO=30°,∴AO=3,∴AB=sin60°AO=2;
故答案為:2;
(2)相等,
理由:∵AO為等邊△ABC的高,∴AO平分∠BAC,∴∠DAF=∠FAE,又∠ADE=∠AFE,
∴△ADQ∽△AFE,∴=,∵∠QEF=∠OAE,∠AFE=∠QFE,
∴△AFE∽△QEF,∴,∴=;
(3)①∵△ADQ∽△AFE,∴=,∴ADAE=AFAQ,即ADAE=(AQ+QF)AQ,
∴ADAE=AQ2+AQQF,∵AQQF=DQQE,∴ADAE=AQ2+DQQE,即AQ2=ADAE﹣DQQE;
②如圖2,過點(diǎn)E作ET⊥AB于T,在Rt△AET中,∠EAT=60°,ET=AEsin60°=b,S△ADE=ADET=ADAE=ADAE=ab,當(dāng)α=90°時(shí),此時(shí)DE∥x軸,S△ADE最小,∴△ADE∽△ABC,∴,∴,又∵S△ABC=×(2)2=3,∴,
當(dāng)α=120°時(shí),此時(shí)DE經(jīng)過點(diǎn)C,即點(diǎn)E和點(diǎn)C重合,S△ADE最大,
∴S△ADE=S△ABC=×3=,∴≤ab≤,
∴≤ab≤,,由①證得:AQ/span>2=ADAE﹣DQQE,即22=ab﹣mn,
∴ab=mn+4,∴≤mn+4≤6,即≤mn≤2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,熒光屏上的甲、乙兩個(gè)光斑(可看作點(diǎn))分別從相距8cm的A,B兩點(diǎn)同時(shí)開始沿線段AB運(yùn)動(dòng),運(yùn)動(dòng)工程中甲光斑與點(diǎn)A的距離S1(cm)與時(shí)間t(s)的函數(shù)關(guān)系圖象如圖2,乙光斑與點(diǎn)B的距離S2(cm)與時(shí)間t(s)的函數(shù)關(guān)系圖象如圖3,已知甲光斑全程的平均速度為1.5cm/s,且兩圖象中△P1O1Q1≌P2Q2O2,下列敘述正確的是( 。
A. 甲光斑從點(diǎn)A到點(diǎn)B的運(yùn)動(dòng)速度是從點(diǎn)B到點(diǎn)A的運(yùn)動(dòng)速度的4倍
B. 乙光斑從點(diǎn)A到B的運(yùn)動(dòng)速度小于1.5cm/s
C. 甲乙兩光斑全程的平均速度一樣
D. 甲乙兩光斑在運(yùn)動(dòng)過程中共相遇3次
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB:y=x+分別交x軸、y軸于點(diǎn)B、A兩點(diǎn),C(3,0),D、E分別為線段AO和線段AC上一動(dòng)點(diǎn),BE交y軸于點(diǎn)H,且AD=CE.當(dāng)BD+BE的值最小時(shí),則H點(diǎn)的坐標(biāo)為( )
A. (0,4) B. (0,5) C. (0,) D. (0,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為參加學(xué)校的“我愛古詩(shī)詞”知識(shí)競(jìng)賽,王曉所在班級(jí)組織了一次古詩(shī)詞知識(shí)測(cè)試,并將全班同學(xué)的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),以下是根據(jù)這次測(cè)試成績(jī)制作的不完整的頻率分布表和頻率分布直方圖.請(qǐng)根據(jù)以上頻率分布表和頻率分布直方圖,回答下列問題:
組別 | 分組 | 頻數(shù) | 頻率 |
1 | 50≤x<60 | 9 | 0.18 |
2 | 60≤x<70 | a | b |
3 | 70≤x<80 | 21 | 0.42 |
4 | 80≤x<90 | m | 0.06 |
5 | 90≤x≤100 | 2 | n |
(1)求出a、b、m、n的值;
(2)老師說:“王曉的測(cè)試成績(jī)是全班同學(xué)成績(jī)的中位數(shù)”,那么王曉的測(cè)試成績(jī)?cè)谑裁捶秶鷥?nèi)?
(3)若要從小明、小敏等幾位成績(jī)優(yōu)秀(分?jǐn)?shù)在80≤x≤100范圍內(nèi)為優(yōu)秀)的同學(xué)中隨機(jī)選取兩位參加競(jìng)賽,請(qǐng)用“列表法”或“樹狀圖”求出小明、小敏同時(shí)被選中的概率.(注:幾位同學(xué)請(qǐng)用A、B、C、D…表示,其中小明為A,小敏為B)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,已知AB是⊙O的直徑,點(diǎn)P在BA的延長(zhǎng)線上,PD切⊙O于點(diǎn)D,過點(diǎn)B作BE垂直于PD,交PD的延長(zhǎng)線于點(diǎn)C,連接AD并延長(zhǎng),交BE于點(diǎn)E.
(1)求證:AB=BE;
(2)若PA=2,cosB=,求⊙O半徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課間,小明拿著老師的等腰三角板玩,不小心掉到兩墻之間,如圖.
(1)求證:△ADC≌△CEB;
(2)從三角板的刻度可知AC=25cm,請(qǐng)你幫小明求出砌墻磚塊的厚度a的大小(每塊磚的厚度相等).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為評(píng)估學(xué)生整理錯(cuò)題集的質(zhì)量情況,進(jìn)行了抽樣調(diào)查,把學(xué)生整理錯(cuò)題集的質(zhì)量分為“非常好”、“較好”、“一般”、“不好”四個(gè)等級(jí),根據(jù)調(diào)查結(jié)果繪制了下面兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了 名學(xué)生;
(2)扇形統(tǒng)計(jì)圖中,m= ,“非常好”部分所在扇形的圓心角度數(shù)為 ;
(3)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)如果4名學(xué)生整理錯(cuò)題集的質(zhì)量情況是:3人“較好”,1人“一般”,現(xiàn)從中隨機(jī)抽取2人,請(qǐng)用列表或畫樹狀圖的方法求出兩人都是“較好”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=2x﹣4與x軸交于點(diǎn)A,與y軸交于點(diǎn)E,過點(diǎn)A作AE的垂線交y軸于點(diǎn)B,連接AB,以AB為邊向上作正方形ABCD(如圖所示),則點(diǎn)D的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種零件,每個(gè)零件的成本為40元,出廠單價(jià)為60元,該廠為鼓勵(lì)銷售商訂購(gòu),制定了促銷條件:當(dāng)一次訂購(gòu)量超過100個(gè)時(shí),每多訂購(gòu)一個(gè),訂購(gòu)的全部零件的出廠單價(jià)就降低0.02元.
(1)若銷售商一次訂購(gòu)x(x>100)個(gè)零件,直接寫出零件的實(shí)際出廠單價(jià)y(元)?
(2)設(shè)銷售商一次訂購(gòu)x(x>100)個(gè)零件時(shí),工廠獲得的利潤(rùn)為W元(W>0).
①求出W(元)與x(個(gè))之間的函數(shù)關(guān)系式及自變量x的取值范圍;并算出銷售商一次訂購(gòu)多少個(gè)零件時(shí),廠家可獲得利潤(rùn)6000元;
②廠家為了達(dá)到既鼓勵(lì)銷售商訂購(gòu)又保證自己能獲取最大利潤(rùn)的目的,重新制定新促銷條件:在原有的基礎(chǔ)上又增加了限制條件﹣﹣銷售商訂購(gòu)的全部零件的實(shí)際出廠單價(jià)不能低于a(元).請(qǐng)你利用函數(shù)及其圖象的性質(zhì)求出a的值;并寫出實(shí)行新促銷條件時(shí)W(元)與x(個(gè))之間的函數(shù)關(guān)系式及自變量x的取值范圍.(工廠出售一個(gè)零件利潤(rùn)=實(shí)際出廠單價(jià)﹣每個(gè)零件的成本)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com