如圖,圓柱的高為15cm,全面積(也稱表面積)為200,那么圓柱底面半徑為多少?

答案:
解析:

圓柱底面半徑為5cm.提示:設(shè)圓柱底面半徑為rcm,根據(jù)題意,得


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,一個(gè)圓柱的底面半徑為8cm,高為15πcm,一只螞蟻從A點(diǎn)爬到B點(diǎn)的最短路程是
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖,圓柱底面半徑為2cm,高為9πcm,點(diǎn)A、B分別是圓柱兩底面圓周上的點(diǎn),且A、B在同一母線上,用一棉線從A順著圓柱側(cè)面繞3圈到B,求棉線最短為
15π
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:非常講解·教材全解全析數(shù)學(xué)八年級上(配課標(biāo)北師大版) 課標(biāo)北師大版 題型:044

如圖,從圓柱體下底圓上的點(diǎn)A開始,有一根繩子沿圓柱體表面繞圓柱一周到達(dá)上底圓上的點(diǎn)B,若圓柱的高為8 cm,而底面圓周長為15 cm,試求繩子的最短長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖所示,一個(gè)圓柱的底面半徑為8cm,高為15πcm,一只螞蟻從A點(diǎn)爬到B點(diǎn)的最短路程是________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

請閱讀下列材料:
實(shí)際問題:如圖(1),一圓柱的底面半徑為5厘米,BC是底面直徑,高AB為5厘米,求一只螞蟻從點(diǎn)A出發(fā)沿圓柱表面爬行到點(diǎn)C的最短路線,小明設(shè)計(jì)了兩條路線.
解決方案:
路線1:側(cè)面展開圖中的線段AC,如圖(2)所示,設(shè)路線l的長度為l1:則l12=AC2=AB2+BC2=52+(5π)2=25+25π2
路線2:高線AB+底面直徑BC,如圖(1)所示.
設(shè)路線2的長度為l2:則l2=AB+BC=5+10=15,l22=225.
為比較l1,l2的大小,我們采用如下方法:
∵l12-l22=25+25π2-225=25π2-200=25(π2-8)>0.
∴l(xiāng)12>l22,所以l1>l2,
小明認(rèn)為應(yīng)選擇路線2較短.
(1)問題類比:
小明對上述結(jié)論有些疑惑,于是他把條件改成:“圓柱的底面半徑為1厘米,高AB為5厘米.”繼續(xù)按前面的路線進(jìn)行計(jì)算.請你幫小明完成下面的計(jì)算:
路線1:l12=AC2=______;
路線2:l2=AB+BC=______,l22=______.
∵l12______l22,∴l(xiāng)1______l2(填“>”或“<”)
∴小亮認(rèn)為應(yīng)選擇路線______(填1或2)較短.
(2)問題拓展:
請你幫小明和小亮繼續(xù)研究:在一般情況下,當(dāng)圓柱的底面半徑為r厘米時(shí),高為h厘米,螞蟻從A點(diǎn)出發(fā)沿圓柱表面爬行到點(diǎn)C,
路線1:l12=______;
路線2:l22=______.
當(dāng)數(shù)學(xué)公式滿足什么條件時(shí),選擇的路2最短?請說明理由.
(3)問題解決:
如圖(3)為2個(gè)相同的圓柱緊密排列在一起,高為5厘米,當(dāng)圓柱的底面半徑r(厘米)=______時(shí),螞蟻從點(diǎn)A出發(fā)沿圓柱表面爬行到C點(diǎn)的兩條線段相等(注:按上面小明所設(shè)計(jì)的兩條路線方式).

查看答案和解析>>

同步練習(xí)冊答案