【題目】如圖,拋物線經(jīng)過(guò)點(diǎn)A(﹣1,0)和B(0,2 ),對(duì)稱軸為x= .
(1)求拋物線的解析式;
(2)拋物線與x軸交于另一個(gè)交點(diǎn)為C,點(diǎn)D在線段AC上,已知AD=AB,若動(dòng)點(diǎn)P從A出發(fā)沿線段AC以每秒1個(gè)單位長(zhǎng)度的度數(shù)勻速運(yùn)動(dòng),同時(shí)另一動(dòng)點(diǎn)Q以某一速度從B出發(fā)沿線段BC勻速運(yùn)動(dòng),問(wèn)是否存在某一時(shí)刻,使線段PQ被直線BD垂直平分?若存在,求出點(diǎn)Q的運(yùn)動(dòng)速度;若不存在,請(qǐng)說(shuō)明理由.
(3)在(2)的前提下,過(guò)點(diǎn)B的直線l與x軸的負(fù)半軸交于點(diǎn)M,是否存在點(diǎn)M,使以A,B,M為頂點(diǎn)的三角形與△PBC相似?如果存在,請(qǐng)直接寫(xiě)出M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)
解:設(shè)拋物線的解析式為y=a(x﹣ )2+k,(a≠),
把點(diǎn)A(﹣1,0)和B(0,2 )代入得到 ,
解得 ,
∴y=﹣ (x﹣ )2+ ,
∴y=﹣ x2+ x+2
(2)
解:令y=0得到﹣ x2+ x+2 =0,解得x= 或﹣1,
∴C( ,0),A(﹣1,0),AB= =3,
∵AD=AB,
∴AD=3,
∴D(2,0),
∵PB被BD垂直平分,
∴BP=BQ,
∴∠DBP=∠DBQ,
∴ (角平分線的性質(zhì)定理,可以用面積法證明),
∴ = ,
∴t=2或 ,
∵t<3,
∴t=2,
∴BP=3,BQ=3,
∴VQ=
(3)
解:存在.理由如下:
由題意P(1,0),PB=3,PC= ,
∵BA=BP=2,
∴∠BAP=∠BPA,
∴∠BPC=∠BAM,
①當(dāng) ,△MAB∽△BPC,
∴ = ,
∴AM= ,OM=OA+AM=
∴M(﹣ ,0).
②當(dāng) 時(shí),△MAB∽CPB,
∴ = ,
∴AM= ,OM=AM+OA= ,
∴M(﹣ ,0).
【解析】(1)設(shè)拋物線的解析式為y=a(x﹣ )2+k,(a≠),把點(diǎn)A(﹣1,0)和B(0,2 )代入,解方程組即可解決問(wèn)題.(2)首先求出A、C坐標(biāo),由∠DBP=∠DBQ,可得 (角平分線的性質(zhì)定理,可以用面積法證明),即 = ,解方程即可解決問(wèn)題.(3)存在.理由如下:首先證明∠BPC=∠BAM,分兩種情形討論①當(dāng) ,△MAB∽△BPC,列出方程解方程即可.②當(dāng) 時(shí),△MAB∽CPB,列出方程解方程即可.
【考點(diǎn)精析】關(guān)于本題考查的相似三角形的應(yīng)用,需要了解測(cè)高:測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長(zhǎng)成比例”的原理解決;測(cè)距:測(cè)量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為參加全區(qū)的“我愛(ài)古詩(shī)詞”知識(shí)競(jìng)賽,王曉所在學(xué)校組織了一次古詩(shī)詞知識(shí)測(cè)試王曉從全體學(xué)生中隨機(jī)抽取部分同學(xué)的分?jǐn)?shù)得分取正整數(shù),滿分為100分進(jìn)行統(tǒng)計(jì)以下是根據(jù)這次測(cè)試成績(jī)制作的進(jìn)行統(tǒng)計(jì),以下是根據(jù)這次測(cè)試成績(jī)制作的不完整的頻率分布表和頻率分布直方圖請(qǐng)根據(jù)以上頻率分布表和布直方圖,回答下列問(wèn)題:
組別 | 分組 | 頻數(shù) | 頻率 |
1 | 9 | ||
2 | m | b | |
3 | 21 | ||
4 | a | ||
5 | 2 | n |
(1)分別求出a、b、m、n的值;寫(xiě)出計(jì)算過(guò)程
(2)老師說(shuō):“王曉的測(cè)試成績(jī)是被抽取的同學(xué)成績(jī)的中位數(shù)”,那么王曉的測(cè)試成績(jī)?cè)谑裁捶秶鷥?nèi)?
(3)得分在的為“優(yōu)秀”,若王曉所在學(xué)校共有600名學(xué)生,從本次比賽選取得分為“優(yōu)秀”的學(xué)生參加區(qū)賽,請(qǐng)問(wèn)共有多少名學(xué)生被選拔參加區(qū)賽?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD、分別是銳角三角形ABC和銳角三角形中BC、邊上的高,且、.若使△ABC≌△,請(qǐng)你補(bǔ)充條件_________.(填寫(xiě)一個(gè)你認(rèn)為適當(dāng)?shù)臈l件即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小宇想測(cè)量位于池塘兩端的A、B兩點(diǎn)的距離.他沿著與直線AB平行的道路EF行走,當(dāng)行走到點(diǎn)C處,測(cè)得∠ACF=45°,再向前行走100米到點(diǎn)D處,測(cè)得∠BDF=60°.若直線AB與EF之間的距離為60米,求A、B兩點(diǎn)的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),AD與BE相交于點(diǎn)點(diǎn)F,G分別是線段AO,
BO的中點(diǎn).
求證:四邊形DEFG是平行四邊形;
如圖2,連接CO,若,求證:四邊形DEFG是菱形;
在的前提下,當(dāng)滿足什么條件時(shí),四邊形DEFG能成為正方形?直接回答即可,不必證明
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)不等的正方形依次排列,每個(gè)正方形都有一個(gè)頂點(diǎn)落在函數(shù)y=x的圖象上,從左向右第3個(gè)正方形中的一個(gè)頂點(diǎn)A的坐標(biāo)為(8,4),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn , 則Sn的值為 . (用含n的代數(shù)式表示,n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校初中三年級(jí)270名師生計(jì)劃集體外出一日游,乘車(chē)往返,經(jīng)與客運(yùn)公司聯(lián)系,他們有座位數(shù)不同的中巴車(chē)和大客車(chē)兩種車(chē)型可供選擇,每輛大客車(chē)比中巴車(chē)多15個(gè)座位,學(xué)校根據(jù)中巴車(chē)和大客車(chē)的座位數(shù)計(jì)算后得知,如果租用中巴車(chē)若干輛,師生剛好坐滿全部座位;如果租用大客車(chē),不僅少用一輛,而且?guī)熒旰筮多30個(gè)座位.
(1)求中巴車(chē)和大客車(chē)各有多少個(gè)座位?
(2)客運(yùn)公司為學(xué)校這次活動(dòng)提供的報(bào)價(jià)是:租用中巴車(chē)每輛往返費(fèi)用350元,租用大客車(chē)每輛往返費(fèi)用400元,學(xué)校在研究租車(chē)方案時(shí)發(fā)現(xiàn),同時(shí)租用兩種車(chē),其中大客車(chē)比中巴車(chē)多租一輛,所需租車(chē)費(fèi)比單獨(dú)租用一種車(chē)型都要便宜,按這種方案需要中巴車(chē)和大客車(chē)各多少輛?租車(chē)費(fèi)比單獨(dú)租用中巴車(chē)或大客車(chē)各少多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上的一點(diǎn),且AD∥CO.
(1)求證:△ADB∽△OBC;
(2)連結(jié)CD,試說(shuō)明CD是⊙O的切線;
(3)若AB=2, ,求AD的長(zhǎng).(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,C是半圓O上一點(diǎn),弦AD平分∠BAC,交BC于點(diǎn)E,若AB=6,AD=5,則DE的長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com