【題目】如圖,在平面直角坐標(biāo)系中,設(shè)點(diǎn)P到原點(diǎn)O的距離為ρ,OP與x軸正方向的夾角為α,則用[ρ,α]表示點(diǎn)P的極坐標(biāo),例如:點(diǎn)P的坐標(biāo)為(1,1),則其極坐標(biāo)為[,45°].若點(diǎn)Q的極坐標(biāo)為[4,120°],則點(diǎn)Q的坐標(biāo)為( )
A. (-2,2) B. (2,-2) C. (-2,-2) D. (-4,-4)
【答案】A
【解析】
根據(jù)題意,弄清極坐標(biāo)中第一個(gè)數(shù)表示點(diǎn)到原點(diǎn)的距離,第二個(gè)數(shù)表示這一點(diǎn)與原點(diǎn)的連線與x軸正方向的夾角,根據(jù)點(diǎn)Q[4,120°],利用特殊角的三角函數(shù)值即可求出點(diǎn)Q的坐標(biāo).
由題目的敘述可知極坐標(biāo)中第一個(gè)數(shù)表示點(diǎn)到原點(diǎn)的距離,而第二個(gè)數(shù)表示這一點(diǎn)與原點(diǎn)的連線與x軸的夾角,極坐標(biāo)Q[4,120°],這一點(diǎn)在第二象限,則在平面直角坐標(biāo)系中橫坐標(biāo)是:﹣4cos60°=﹣2,縱坐標(biāo)是4sin60°=2,于是極坐標(biāo)Q[4,120°]的坐標(biāo)為(﹣2,2),
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由邊長為的若干個(gè)小正方形拼成的方格圖,的頂點(diǎn),,均在小正方形的頂點(diǎn)上.
(1)在圖中建立恰當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,且使點(diǎn)的坐標(biāo)為,并寫出,兩點(diǎn)的坐標(biāo);
(2)在(1)中建立的平面直角坐標(biāo)系內(nèi)畫出關(guān)于軸對(duì)稱的;
(3)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,則下列條件中不一定能使△ABC≌△ABD的是( )
A. AC=AD B. BC=BD C. ∠C=∠D D. ∠3=∠4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東45°方向的B處,求此時(shí)輪船所在的B處與燈塔P的距離.(參考數(shù)據(jù):≈2.449,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時(shí),若AB=2,CE=2,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張正方形紙片ABCD對(duì)折,使CD與AB重合,得到折痕MN后展開,E為CN上一點(diǎn),將△CDE沿DE所在的直線折疊,使得點(diǎn)C落在折痕MN上的點(diǎn)F處,連接AF,BF,BD.則下列結(jié)論中:①△ADF是等邊三角形;②tan∠EBF=2-;③S△ADF=S正方形ABCD;④BF2=DF·EF.其中正確的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下面圖1、圖2、圖3各正方形中的四個(gè)數(shù)之間的變化規(guī)律,按照這樣的變化規(guī)律,圖n中的M應(yīng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,在下列代數(shù)式中(1)a+b+c>0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0; 其中正確的個(gè)數(shù)為( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CF交AD于點(diǎn)G,交BE于點(diǎn)H,下面說法中正確的序號(hào)是_____.
①△ABE的面積等于△BCE的面積;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com