【題目】一次函數(shù)yax+bybx+a的圖象可能是( 。

A. B. C. D.

【答案】D

【解析】

對于各選項,先確定一條直線的位置得到ab的符號,然后根據(jù)此符號判斷另一條直線的位置是否符號要求即可.

A、若經(jīng)過第一、二、三象限的直線為y=ax+b,則a0b0,所以直線y=bx+a經(jīng)過第一、二、三象限,所以A選項錯誤;

B、若經(jīng)過第一、二、三象限的直線為y=ax+b,則a0,b0,所以直線y=bx+a經(jīng)過第一、二、三象限,所以B選項錯誤;

C、若經(jīng)過第一、三、四象限的直線為y=ax+b,則a0b<0,所以直線y=bx+a經(jīng)過第一、二、四象限,所以C選項錯誤;

D、若經(jīng)過第一、二、四象限的直線為y=ax+b,則a0,b0,所以直線y=bx+a經(jīng)過第一、三、四象限,所以D選項正確,

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車先后從深圳書城出發(fā),沿相同的路線到距書城240km的某市.因路況原因,甲車行駛的路程y (km)與甲車行駛的時間x (h)的函數(shù)關(guān)系圖象為折線 O-A-B, 乙車行駛的路程y (km)與甲車行駛的時間xh)的函數(shù)關(guān)系圖象為線段CD.

(1)求線段AB所在直線的函數(shù)表達(dá)式;

(2)①乙車比甲車晚出發(fā) 小時;

②乙車出發(fā)多少小時后追上甲車?

(3)乙車出發(fā)多少小時后甲、乙兩車相距10千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小麥改良品種后平均每公頃增加產(chǎn)量a噸,原來產(chǎn)m噸小麥的一塊土地,現(xiàn)在小麥的總產(chǎn)量增加了20噸.

1)當(dāng)a0.8m100時,原來和現(xiàn)在小麥的平均每公頃產(chǎn)量各是多少?

2)請直接接寫出原來小麥的平均每公頃產(chǎn)量是   噸,現(xiàn)在小麥的平均每公頃產(chǎn)量是   噸;(用含am的式于表示)

3)在這塊土地上,小麥的改良品種成熟后,甲組收割完需n小時,乙組比甲組少用0.5小時就能收割完,求兩組一起收割完這塊麥田需要多少小時?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,E、F在線段BD,AB=CD,∠B=∠D,BF=DE

求證:(1)AE=CF;(2)AFCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由邊長為的若干個小正方形拼成的方格圖,的頂點,,均在小正方形的頂點上.

1)在圖中建立恰當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,且使點的坐標(biāo)為,并寫出,兩點的坐標(biāo);

2)在(1)中建立的平面直角坐標(biāo)系內(nèi)畫出關(guān)于軸對稱的;

3)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組為了測量河對岸l1的兩棵古樹A、B之間的距離,他們在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為_____m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)報名參加學(xué)校秋季運動會,有以下 5 個項目可供選擇:徑賽項目:100m、200m、1000m(分別用 A1、A2、A3 表示);田賽項目:跳遠(yuǎn),跳高(分別用 T1、T2 表示).

(1)該同學(xué)從 5 個項目中任選一個,恰好是田賽項目的概率 P

(2)該同學(xué)從 5 個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率 P1,利用列表法或樹狀圖加以說明;

(3)該同學(xué)從 5 個項目中任選兩個,則兩個項目都是徑賽項目的概率 P2 為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bxy=bx+a的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張正方形紙片ABCD對折,使CDAB重合,得到折痕MN后展開,ECN上一點,將△CDE沿DE所在的直線折疊,使得點C落在折痕MN上的點F處,連接AF,BFBD.則下列結(jié)論中:①△ADF是等邊三角形;②tan∠EBF=2-;③SADFS正方形ABCD;④BF2DF·EF.其中正確的是(  )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

同步練習(xí)冊答案