【題目】已知:如圖,△ABC,∠ACB=90°,AC=5,DE⊥BD,BC=BD,∠ABE=∠CBD.
(1)求證:△ABC≌△EBD
(2)延長(zhǎng)AC交DE于F點(diǎn),若BC⊥BD,CF=4,求EF的長(zhǎng)度.
【答案】(1)見解析(2)1
【解析】
(1)根據(jù)∠ABE=∠CBD得到∠ABC=∠EBD,再根據(jù)ASA即可證明△ABC≌△EBD;
(2)根據(jù)BC⊥BD,BC⊥AC,DE⊥BD得到四邊形BCFD為矩形,再根據(jù)BC=BD得到矩形BCFD為正方形,故DF=CF,AC=DE,故可求解EF.
(1)∵∠ABE=∠CBD
∴∠ABE-∠EBC=∠CBD-∠EBC
∴∠ABC=∠EBD
又BC=BD,∠ACB=90°,DE⊥BD,
∴△ABC≌△EBD(ASA)
(2)∵BC⊥BD,BC⊥AC,DE⊥BD
∴四邊形BCFD為矩形,
又BC=BD
∴矩形BCFD為正方形,
故DF=CF=4,AC=DE=5,
∴EF=DE-DF=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】再讀教材:
寬與長(zhǎng)的比是 (約為0.618)的矩形叫做黃金矩形,黃金矩形給我們以協(xié)調(diào),勻稱的美感.世界各國(guó)許多著名的建筑.為取得最佳的視覺效果,都采用了黃金矩形的設(shè)計(jì),下面我們用寬為2的矩形紙片折疊黃金矩形.(提示; MN=2)
第一步,在矩形紙片一端.利用圖①的方法折出一個(gè)正方形,然后把紙片展平.
第二步,如圖②.把這個(gè)正方形折成兩個(gè)相等的矩形,再把紙片展平.
第三步,折出內(nèi)側(cè)矩形的對(duì)角線 AB,并把 AB折到圖③中所示的AD處,
第四步,展平紙片,按照所得的點(diǎn)D折出 DE,使 DE⊥ND,則圖④中就會(huì)出現(xiàn)黃金矩形,
問(wèn)題解決:
(1)圖③中AB=________(保留根號(hào));
(2)如圖③,判斷四邊形 BADQ的形狀,并說(shuō)明理由;
(3)請(qǐng)寫出圖④中所有的黃金矩形,并選擇其中一個(gè)說(shuō)明理由.
(4)結(jié)合圖④.請(qǐng)?jiān)诰匦?/span> BCDE中添加一條線段,設(shè)計(jì)一個(gè)新的黃金矩形,用字母表示出來(lái),并寫出它的長(zhǎng)和寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)大小不同的等腰直角三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,圖中AB=AC,AD=AE,∠BAC=∠EAD=90°,B,C,E在同一條直線上,連結(jié)DC.
(1)圖2中的全等三角形是_______________,并給予證明(說(shuō)明:結(jié)論中不得含有未標(biāo)識(shí)的字母);
(2)指出線段DC和線段BE的關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(﹣1,0),B(4,0),C(0,2)三點(diǎn),點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)P做x軸的垂線l交拋物線于點(diǎn)Q,交直線BD于點(diǎn)M.
(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;
(2)已知點(diǎn)F(0,),當(dāng)點(diǎn)P在x軸上運(yùn)動(dòng)時(shí),試求m為何值時(shí),四邊形DMQF是平行四邊形?
(3)點(diǎn)P在線段AB運(yùn)動(dòng)過(guò)程中,是否存在點(diǎn)Q,使得以點(diǎn)B、Q、M為頂點(diǎn)的三角形與△BOD相似?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】郵遞員騎摩托車從郵局出發(fā),先向東騎行2km到達(dá)A村,繼續(xù)向東騎行3km到達(dá)B村,然后向西騎行9km到C村,最后回到郵局.
(1)以郵局為原點(diǎn),以向東方向?yàn)檎较,?/span>1個(gè)單位長(zhǎng)度表示1km,請(qǐng)你在數(shù)軸上表示出A、B、C三個(gè)村莊的位置;
(2)C村離A村有多遠(yuǎn)?
(3)若摩托車每1km耗油0.03升,這趟路共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),連接CP,將線段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到線段CQ,連接BP,DQ.
(1)如圖a,求證:△BCP≌△DCQ;
(2)如圖,延長(zhǎng)BP交直線DQ于點(diǎn)E.
① 如圖b,求證:BE⊥DQ;
② 如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說(shuō)明理由;
③ 若正方形ABCD的邊長(zhǎng)為10,DE=2,PB=PC,直接寫出線段PB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,AF⊥BD于E,AF交BC于點(diǎn)F,連接DF,下列結(jié)論:①△ABD≌△CDB;②∠BFE=∠BDC;③S△ABE=S△DEF;④AB=6,AD=8,DB=10,則AE=4.其中正確的個(gè)數(shù)為( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)準(zhǔn)備進(jìn)一批兩種不同型號(hào)的衣服,已知購(gòu)進(jìn)A種型號(hào)衣服9件,B種型號(hào)衣服10件,則共需1810元;若購(gòu)進(jìn)A種型號(hào)衣服12件,B種型號(hào)衣服8件,共需1880元;已知銷售一件A型號(hào)衣服可獲利18元,銷售一件B型號(hào)衣服可獲利30元,要使在這次銷售中獲利不少于699元,且A型號(hào)衣服不多于28件.
(1)求A、B型號(hào)衣服進(jìn)價(jià)各是多少元?
(2)若已知購(gòu)進(jìn)A型號(hào)衣服是B型號(hào)衣服的2倍還多4件,則商店在這次進(jìn)貨中可有幾種方案并簡(jiǎn)述購(gòu)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為豐富少年兒童的業(yè)余文化生活,某社區(qū)要在如圖所示的AB所在的直線上建一圖書閱覽室,該社區(qū)有兩所學(xué)校,所在的位置分別在點(diǎn)C和點(diǎn)D處。CA⊥AB于A,DB⊥AB于B,已知AB=25km,CA=15km,DB=10km,試問(wèn):閱覽室E建在距A點(diǎn)多遠(yuǎn)時(shí),才能使它到C、D兩所學(xué)校的距離相等?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com