【題目】如圖,已知拋物線經(jīng)過點A(﹣1,0),B(4,0),C(0,2)三點,點D與點C關于x軸對稱,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P做x軸的垂線l交拋物線于點Q,交直線BD于點M.
(1)求該拋物線所表示的二次函數(shù)的表達式;
(2)已知點F(0,),當點P在x軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?
(3)點P在線段AB運動過程中,是否存在點Q,使得以點B、Q、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標;若不存在,請說明理由.
【答案】(1)y=﹣x2+x+2;(2)m=﹣1或m=3時,四邊形DMQF是平行四邊形;(3)點Q的坐標為(3,2)或(﹣1,0)時,以點B、Q、M為頂點的三角形與△BOD相似.
【解析】
(1)待定系數(shù)法求解可得;
(2)先利用待定系數(shù)法求出直線BD解析式為y=x-2,則Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四邊形DMQF是平行四邊形知QM=DF,據(jù)此列出關于m的方程,解之可得;
(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再證△MBQ∽△BPQ得,即,解之即可得此時m的值;②∠BQM=90°,此時點Q與點A重合,△BOD∽△BQM′,易得點Q坐標.
(1)由拋物線過點A(-1,0)、B(4,0)可設解析式為y=a(x+1)(x-4),
將點C(0,2)代入,得:-4a=2,
解得:a=-,
則拋物線解析式為y=-(x+1)(x-4)=-x2+x+2;
(2)由題意知點D坐標為(0,-2),
設直線BD解析式為y=kx+b,
將B(4,0)、D(0,-2)代入,得:
,解得:,
∴直線BD解析式為y=x-2,
∵QM⊥x軸,P(m,0),
∴Q(m,--m2+m+2)、M(m,m-2),
則QM=-m2+m+2-(m-2)=-m2+m+4,
∵F(0,)、D(0,-2),
∴DF=,
∵QM∥DF,
∴當-m2+m+4=時,四邊形DMQF是平行四邊形,
解得:m=-1(舍)或m=3,
即m=3時,四邊形DMQF是平行四邊形;
(3)如圖所示:
∵QM∥DF,
∴∠ODB=∠QMB,
分以下兩種情況:
①當∠DOB=∠MBQ=90°時,△DOB∽△MBQ,
則,
∵∠MBQ=90°,
∴∠MBP+∠PBQ=90°,
∵∠MPB=∠BPQ=90°,
∴∠MBP+∠BMP=90°,
∴∠BMP=∠PBQ,
∴△MBQ∽△BPQ,
∴,即,
解得:m1=3、m2=4,
當m=4時,點P、Q、M均與點B重合,不能構成三角形,舍去,
∴m=3,點Q的坐標為(3,2);
②當∠BQM=90°時,此時點Q與點A重合,△BOD∽△BQM′,
此時m=-1,點Q的坐標為(-1,0);
綜上,點Q的坐標為(3,2)或(-1,0)時,以點B、Q、M為頂點的三角形與△BOD相似.
科目:初中數(shù)學 來源: 題型:
【題目】邊長為2的正方形ABCD中E是AB的中點,P在射線DC上從D出發(fā)以每秒1個單位長度的速度運動,過P做PF⊥DE,當運動時間為__________秒時,以點P、F、E為頂點的三角形與△AED相似
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:是長方形紙片ABCD折疊的情況,紙片的寬度AB=8cm,長AD=10cm,AD沿點A對折,點D正好落在BC上的M處,AE是折痕.
(1)求CM的長;
(2)求梯形ABCE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:“半角問題”:
(1)如圖:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分別是BC,CD上的點.且∠EAF=60°.探究圖中線段EF,BE,FD之間的數(shù)量關系.
小明同學探究此“半角問題”的方法是:延長FD到點G.使DG=BE.連結AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結論,他的結論應是 ;(直接寫結論,不需證明)
探索延伸:當聰明的你遇到下面的問題該如何解決呢?
(2)若將(1)中“∠BAD=120°,∠EAF=60°”換為∠EAF=∠BAD.其它條件不變。如圖1,試問線段EF、BE、FD具有怎樣的數(shù)量關系,并證明.
(3)如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是邊BC、CD上的點,且∠EAF=∠BAD,請直接寫出線段EF、BE、FD它們之間的數(shù)量關系.(不需要證明)
(4)如圖3,在四邊形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分別是邊BC、CD延長線上的點,且∠EAF=∠BAD,試問線段EF、BE、FD具有怎樣的數(shù)量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中有兩點A(0,1),B(﹣1,0),動點P在反比例函數(shù)y=的圖象上運動,當線段PA與線段PB之差的絕對值最大時,點P的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑為6cm,B為⊙O外一點,OB交⊙O于點A,AB=OA,動點P從點A出發(fā),以π cm/s的速度在⊙O上按逆時針方向運動一周回到點A立即停止.當點P運動的時間為______時,BP與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC,∠ACB=90°,AC=5,DE⊥BD,BC=BD,∠ABE=∠CBD.
(1)求證:△ABC≌△EBD
(2)延長AC交DE于F點,若BC⊥BD,CF=4,求EF的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以點A為圓心,任意長為半徑畫弧分別交AB,AC于點M和N,再分別以點M,N為圓心畫弧,兩弧交于點P,連結AP并延長交BC于點D,則下列說法中正確的個數(shù)是( 。
①AD是∠BAC的平分線
②∠ADC=60°
③△ABD是等腰三角形
④點D到直線AB的距離等于CD的長度.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有筐白菜,以每筐千克為標準,超過或不足的分別用正、負來表示,記錄如下:
與標準質量的差單位:千克 | ||||||
筐 數(shù) |
(1)與標準質量比較,筐白菜總計超過或不足多少千克?
(2)若白菜每千克售價元,則出售這筐白菜可賣多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com