【題目】如圖,四邊形ABCD中,∠ABC90°AB4,BC3CD12AD13.求四邊形ABCD的面積.

【答案】36

【解析】

連接AC,在直角三角形ABC中,由ABBC的長,利用勾股定理求出AC的長,再由ADCD的長,利用勾股定理的逆定理得到三角形ACD為直角三角形,根據(jù)四邊形ABCD的面積=直角三角形ABC的面積+直角三角形ACD的面積,即可求出四邊形的面積.

連接AC,如圖所示:

∵∠B=90°,∴△ABC為直角三角形,
AB=4,BC=3,
∴根據(jù)勾股定理得:AC==5,
AD=13,CD=12,
AD2=132=169CD2+AC2=122+52=144+25=169
CD2+AC2=AD2
∴△ACD為直角三角形,∠ACD=90°,
S四邊形ABCD=SABC+SACD=ABBC+ACCD=×3×4+×12×5=36

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖ABC三個頂點的坐標分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度.

(1)畫出ABC向上平移6個單位得到的A1B1C1

(2)以點C為位似中心,在網(wǎng)格中畫出A2B2C2,使A2B2C2ABC位似,且A2B2C2ABC的位似比為2:1,并直接寫出點A2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中.


1)若點EF分別在AB、AD上,且AE=DF.試判斷DECF的數(shù)量及位置關系,并說明理由;
2)若P、QM、N是正方形ABCD各邊上的點,PQMN相交,且PQ=MN,問PQMN成立嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC 中,AB=AC,CD是∠ACB的平分線,DEBC,交AC于點 E

1)求證:DE=CE

2)若∠CDE=25°,求∠A 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形MNPQ放置在矩形ABCD中,使點M,N分別在AB,AD邊上滑動,若MN=6,PN=4,在滑動過程中,點A與點P的距離AP的最大值為( 。

A. 4 B. 2 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC=5,線段AB的垂直平分線DE分別交邊AB、AC于點E、D


1)若∠A=40°,求∠DBC的度數(shù);
2)若△BCD的周長為8,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在我市中小學標準化建設工程中,某學校計劃購進一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.

1)求每臺電腦、每臺電子白板各多少萬元?

2)根據(jù)學校實際,需購進電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,該校有幾種購買方案?

3)上面的哪種方案費用最低?按費用最低方案購買需要多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經(jīng)過,兩點,與x軸交于另一點B

求此拋物線的解析式;

若拋物線的頂點為M,點P為線段OB上一動點不與點B重合,點Q在線段MB上移動,且,設線段,求x的函數(shù)關系式,并直接寫出自變量x的取值范圍;

在同一平面直角坐標系中,兩條直線分別與拋物線交于點EG,與中的函數(shù)圖象交于點F、問四邊形EFHG能否成為平行四邊形?若能,求m、n之間的數(shù)量關系;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中.BC5cm,BP、CP分別是∠ABC和∠ACB的平分線,且PDAB,PEAC,則△PDE的周長是______cm

查看答案和解析>>

同步練習冊答案