相關(guān)習(xí)題
 0  128010  128018  128024  128028  128034  128036  128040  128046  128048  128054  128060  128064  128066  128070  128076  128078  128084  128088  128090  128094  128096  128100  128102  128104  128105  128106  128108  128109  128110  128112  128114  128118  128120  128124  128126  128130  128136  128138  128144  128148  128150  128154  128160  128166  128168  128174  128178  128180  128186  128190  128196  128204  366461 

科目: 來源:第27章《二次函數(shù)》中考題集(44):27.3 實踐與探索(解析版) 題型:解答題

將一矩形紙片OABC放在直角坐標(biāo)系中,O為原點,C在x軸上,OA=6,OC=10.
(1)如圖(1),在OA上取一點E,將△EOC沿EC折疊,使O點落在AB邊上的D點,求E點的坐標(biāo);
(2)如圖(2),在OA、OC邊上選取適當(dāng)?shù)狞cE′、F,將△E′OF沿E′F折疊,使O點落在AB邊上的D′點,過D′作D′G∥A′O交E′F于T點,交OC′于G點,求證:TG=A′E′.
(3)在(2)的條件下,設(shè)T(x,y)①探求:y與x之間的函數(shù)關(guān)系式.②指出變量x的取值范圍.
(4)如圖(3),如果將矩形OABC變?yōu)槠叫兴倪呅蜲A“B“C“,使O C“=10,O C“邊上的高等于6,其它條件均不變,探求:這時T(x,y)的坐標(biāo)y與x之間是否仍然滿足(3)中所得的函數(shù)關(guān)系,若滿足,請說明理由;若不滿足,寫出你認(rèn)為正確的函數(shù)關(guān)系式.

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(44):27.3 實踐與探索(解析版) 題型:解答題

如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的直角三角形紙片,點O與原點重合,點A在x軸上,點B在y軸上,OB=,∠BAO=30度.將Rt△AOB折疊,使BO邊落在BA邊上,點O與點D重合,折痕為BC.
(1)求直線BC的解析式;
(2)求經(jīng)過B,C,A三點的拋物線y=ax2+bx+c的解析式;若拋物線的頂點為M,試判斷點M是否在直線BC上,并說明理由.

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(44):27.3 實踐與探索(解析版) 題型:解答題

如圖,拋物線y=-x2+x-2與x軸相交于點A、B,與y軸相交于點C.
(1)求證:△AOC∽△COB;
(2)過點C作CD∥x軸交拋物線于點D.若點P在線段AB上以每秒1個單位的速度由A向B運動,同時點Q在線段CD上也以每秒1個單位的速度由D向C運動,則經(jīng)過幾秒后,PQ=AC.

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(44):27.3 實踐與探索(解析版) 題型:解答題

已知拋物線C1:y=-x2+2mx+n(m,n為常數(shù),且m≠0,n>0)的頂點為A,與y軸交于點C;拋物線C2與拋物線C1關(guān)于y軸對稱,其頂點為B,連接AC,BC,AB.
注:拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為
(1)請在橫線上直接寫出拋物線C2的解析式:______;
(2)當(dāng)m=1時,判定△ABC的形狀,并說明理由;
(3)拋物線C1上是否存在點P,使得四邊形ABCP為菱形?如果存在,請求出m的值;如果不存在,請說明理由.

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(44):27.3 實踐與探索(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線y=-x+1分別與x軸,y軸交于點A,點B.
(1)以AB為一邊在第一象限內(nèi)作等邊△ABC及△ABC的外接圓⊙M(用尺規(guī)作圖,不要求寫作法,但要保留作圖痕跡);
(2)若⊙M與x軸的另一個交點為點D,求A,B,C,D四點的坐標(biāo);
(3)求經(jīng)過A,B,D三點的拋物線的解析式,并判斷在拋物線上是否存在點P,使△ADP的面積等于△ADC的面積?若存在,請直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(44):27.3 實踐與探索(解析版) 題型:解答題

如圖,拋物線y=ax2-8ax+12a(a<0)與x軸交于A、B兩點(點A在點B的左側(cè)),拋物線上另有一點C在第一象限,滿足∠ACB為直角,且恰使△OCA∽△OBC.
(1)求線段OC的長;
(2)求該拋物線的函數(shù)關(guān)系式;
(3)在x軸上是否存在點P,使△BCP為等腰三角形?若存在,求出所有符合條件的P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(44):27.3 實踐與探索(解析版) 題型:解答題

如圖,已知拋物線y=x2+1,直線y=kx+b經(jīng)過點B(0,2)
(1)求b的值;
(2)將直線y=kx+b繞著點B旋轉(zhuǎn)到與x軸平行的位置時(如圖1),直線與拋物線y=x2+1相交,其中一個交點為P,求出P的坐標(biāo);
(3)將直線y=kx+b繼續(xù)繞著點B旋轉(zhuǎn),與拋物線相交,其中一個交點為P'(如圖②),過點P'作x軸的垂線P'M,點M為垂足.是否存在這樣的點P',使△P'BM為等邊三角形?若存在,請求出點P'的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(44):27.3 實踐與探索(解析版) 題型:解答題

如圖,在△ABC中,AB=AC,E是高AD上的動點,F(xiàn)是點D關(guān)于點E的對稱點(點F在高AD上,且不與A,D重合).過點F作BC的平行線與AB交于G,與AC交于H,連接GE并延長交BC于點I,連接HE并延長交BC于點J,連接GJ,HI.
(1)求證:四邊形GHIJ是矩形;
(2)若BC=10,AD=6,設(shè)DE=x,S矩形GHIJ=y.
①求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
②點E在何處時,矩形GHIJ的面積與△AGH的面積相等?

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(44):27.3 實踐與探索(解析版) 題型:解答題

如圖,在直角坐標(biāo)系中,O為原點.點A在x軸的正半軸上,點B在y軸的正半軸上,tan∠OAB=2.二次函數(shù)y=x2+mx+2的圖象經(jīng)過點A,B,頂點為D.
(1)求這個二次函數(shù)的解析式;
(2)將△OAB繞點A順時針旋轉(zhuǎn)90°后,點B落到點C的位置.將上述二次函數(shù)圖象沿y軸向上或向下平移后經(jīng)過點C.請直接寫出點C的坐標(biāo)和平移后所得圖象的函數(shù)解析式;
(3)設(shè)(2)中平移后所得二次函數(shù)圖象與y軸的交點為B1,頂點為D1.點P在平移后的二次函數(shù)圖象上,且滿足△PBB1的面積是△PDD1面積的2倍,求點P的坐標(biāo).

查看答案和解析>>

科目: 來源:第27章《二次函數(shù)》中考題集(44):27.3 實踐與探索(解析版) 題型:解答題

如圖所示,在平面直角坐標(biāo)系中有點A(-1,0),點B(4,0),以AB為直徑的半圓交y軸正半軸于點C.
(1)求點C的坐標(biāo);
(2)求過A,B,C三點的拋物線的解析式;
(3)在(2)的條件下,若在拋物線上有一點D,使四邊形BOCD為直角梯形,求直線BD的解析式;
(4)設(shè)點M是拋物線上任意一點,過點M作MN⊥y軸,交y軸于點N.若在線段AB上有且只有一點P,使∠MPN為直角,求點M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案