相關(guān)習(xí)題
 0  140159  140167  140173  140177  140183  140185  140189  140195  140197  140203  140209  140213  140215  140219  140225  140227  140233  140237  140239  140243  140245  140249  140251  140253  140254  140255  140257  140258  140259  140261  140263  140267  140269  140273  140275  140279  140285  140287  140293  140297  140299  140303  140309  140315  140317  140323  140327  140329  140335  140339  140345  140353  366461 

科目: 來源:第2章《二次函數(shù)》中考題集(30):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,已知拋物線y=ax2-4x+c經(jīng)過點(diǎn)A(0,-6)和B(3,-9).
(1)求出拋物線的解析式;
(2)寫出拋物線的對稱軸方程及頂點(diǎn)坐標(biāo);
(3)點(diǎn)P(m,m)與點(diǎn)Q均在拋物線上(其中m>0),且這兩點(diǎn)關(guān)于拋物線的對稱軸對稱,求m的值及點(diǎn)Q的坐標(biāo);
(4)在滿足(3)的情況下,在拋物線的對稱軸上尋找一點(diǎn)M,使得△QMA的周長最。

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(30):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,直線y=-x+6與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,以線段AB為直徑作⊙C,拋物線y=ax2+bx+c過A、C、O三點(diǎn).
(1)求點(diǎn)C的坐標(biāo)和拋物線的解析式;
(2)過點(diǎn)B作直線與x軸交于點(diǎn)D,且OB2=OA•OD,求證:DB是⊙C的切線;
(3)拋物線上是否存在一點(diǎn)P,使以P、O、C、A為頂點(diǎn)的四邊形為直角梯形?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(30):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)P(m,-1)(m>0).連接OP,將線段OP繞點(diǎn)O按逆時針方向旋轉(zhuǎn)90°得到線段OM,且點(diǎn)M是拋物線y=ax2+bx+c的頂點(diǎn).
(1)若m=1,拋物線y=ax2+bx+c經(jīng)過點(diǎn)(2,2),當(dāng)0≤x≤1時,求y的取值范圍;
(2)已知點(diǎn)A(1,0),若拋物線y=ax2+bx+c與y軸交于點(diǎn)B,直線AB與拋物線y=ax2+bx+c有且只有一個交點(diǎn),請判斷△BOM的形狀,并說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(30):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,拋物線y1=ax2-2ax+b經(jīng)過A(-1,0),C(0,)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求此拋物線的解析式;
(2)若拋物線的頂點(diǎn)為M,點(diǎn)P為線段OB上一動點(diǎn)(不與點(diǎn)B重合),點(diǎn)Q在線段MB上移動,且∠MPQ=45°,設(shè)線段OP=x,MQ=y2,求y2與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(3)在同一平面直角坐標(biāo)系中,兩條直線x=m,x=n分別與拋物線交于點(diǎn)E、G,與(2)中的函數(shù)圖象交于點(diǎn)F、H.問四邊形EFHG能否成為平行四邊形?若能,求m、n之間的數(shù)量關(guān)系;若不能,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(30):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中放置一矩形ABCO,其頂點(diǎn)為A(0,1)、B(-3,1)、C(-3,0)、O(0,0).將此矩形沿著過E(-,1)、F(-,0)的直線EF向右下方翻折,B、C的對應(yīng)點(diǎn)分別為B′、C′.
(1)求折痕所在直線EF的解析式;
(2)一拋物線經(jīng)過B、E、B′三點(diǎn),求此二次函數(shù)解析式;
(3)能否在直線EF上求一點(diǎn)P,使得△PBC周長最?如能,求出點(diǎn)P的坐標(biāo);若不能,說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(30):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,矩形ABCD的頂點(diǎn)A、B的坐標(biāo)分別為(-4,0)和(2,0),BC=.設(shè)直線AC與直線x=4交于點(diǎn)E.
(1)求以直線x=4為對稱軸,且過C與原點(diǎn)O的拋物線的函數(shù)關(guān)系式,并說明此拋物線一定過點(diǎn)E;
(2)設(shè)(1)中的拋物線與x軸的另一個交點(diǎn)為N,M是該拋物線上位于C、N之間的一動點(diǎn),求△CMN面積的最大值.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(30):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過O(0,0),M(1,1)和N(n,0)
(n≠0)三點(diǎn).
(1)若該函數(shù)圖象頂點(diǎn)恰為M點(diǎn),寫出此時n的值及y的最大值;
(2)當(dāng)n=-2時,確定這個二次函數(shù)的解析式,并判斷此時y是否有最大值;
(3)由(1)、(2)可知,n的取值變化,會影響該函數(shù)圖象的開口方向.請求出n滿足什么條件時,y有最小值.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(30):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,拋物線y=ax2+bx經(jīng)過點(diǎn)A(4,0),B(2,2).連接OB,AB.
(1)求該拋物線的解析式;
(2)求證:△OAB是等腰直角三角形;
(3)將△OAB繞點(diǎn)O按順時針方向旋轉(zhuǎn)135°得到△OA′B′,寫出△OA′B′的邊A′B′的中點(diǎn)P的坐標(biāo).試判斷點(diǎn)P是否在此拋物線上,并說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(30):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖所示,拋物線與x軸交于點(diǎn)A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3).以AB為直徑作⊙M,過拋物線上一點(diǎn)P作⊙M的切線PD,切點(diǎn)為D,并與⊙M的切線AE相交于點(diǎn)E,連接DM并延長交⊙M于點(diǎn)N,連接AN、AD.
(1)求拋物線所對應(yīng)的函數(shù)關(guān)系式及拋物線的頂點(diǎn)坐標(biāo);
(2)若四邊形EAMD的面積為,求直線PD的函數(shù)關(guān)系式;
(3)拋物線上是否存在點(diǎn)P,使得四邊形EAMD的面積等于△DAN的面積?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(30):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

(1)探究新知:
①如圖1,已知AD∥BC,AD=BC,點(diǎn)M,N是直線CD上任意兩點(diǎn).
求證:△ABM與△ABN的面積相等.
②如圖2,已知AD∥BE,AD=BE,AB∥CD∥EF,點(diǎn)M是直線CD上任一點(diǎn),點(diǎn)G是直線EF上任一點(diǎn),試判斷△ABM與△ABG的面積是否相等,并說明理由.
(2)結(jié)論應(yīng)用:
如圖3,拋物線y=ax2+bx+c的頂點(diǎn)為C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)D,試探究在拋物線y=ax2+bx+c上是否存在除點(diǎn)C以外的點(diǎn)E,使得△ADE與△ACD的面積相等?若存在,請求出此時點(diǎn)E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案