科目: 來源:2010年山東省青島市初級中學(xué)學(xué)業(yè)水平考試數(shù)學(xué)試題 題型:059
已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8 cm,BC=6 cm,EF=9 cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2 cm/s的速度沿BA向點A勻速移動.當(dāng)△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動.DE與AC相交于點Q,連接PQ,設(shè)移動時間為t(s)(0<t<4.5).解答下列問題:
(1)當(dāng)t為何值時,點A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時刻t,使面積y最?若存在,求出y的最小值;若不存在,說明理由.
(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.(圖(3)供同學(xué)們做題使用)
查看答案和解析>>
科目: 來源:2010年江蘇省鹽城市中考數(shù)學(xué)真題試卷 題型:059
已知:函數(shù)y=ax2+x+1的圖象與x軸只有一個公共點.
(1)求這個函數(shù)關(guān)系式;
(2)如圖所示,設(shè)二次函數(shù)y=ax2+x+1圖象的頂點為B,與y軸的交點為A,P為圖象上的一點,若以線段PB為直徑的圓與直線AB相切于點B,求P點的坐標(biāo);
(3)在(2)中,若圓與x軸另一交點關(guān)于直線PB的對稱點為M,試探索點M是否在拋物線y=ax2+x+1上,若在拋物線上,求出M點的坐標(biāo);若不在,請說明理由.
查看答案和解析>>
科目: 來源:2010年湖南常德市初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷 題型:059
如圖,若四邊形ABCD、四邊形CFED都是正方形,顯然圖中有AG=CE,AG⊥CE.
(1)當(dāng)正方形GFED繞D旋轉(zhuǎn)到如圖的位置時,AG=CE是否成立?若成立,請給出證明;若不成立,請說明理由.
(2)當(dāng)正方形GFED繞D旋轉(zhuǎn)到如圖的位置時,延長CE交AG于H,交AD于M.
①求證:AG⊥CH;
②當(dāng)AD=4,DG=時,求CH的長.
查看答案和解析>>
科目: 來源:2010年湖北省恩施自治州初中畢業(yè)及高中招生考試數(shù)學(xué)試題 題型:059
(1)計算:如圖①,直徑為a的三等圓⊙O1、⊙O2、⊙O3兩兩外切,切點分別為A、B、C,求O1A的長(用含a的代數(shù)式表示).
(2)探索:若干個直徑為a的圓圈分別按如圖②所示的方案一和如圖③所示的方案二的方式排放,探索并求出這兩種方案中n層圓圈的高度hn和(用含n、a的代數(shù)式表示).
(3)應(yīng)用:現(xiàn)有長方體集裝箱,其內(nèi)空長為5米,寬為3.1米,高為3.1米.用這樣的集裝箱裝運長為5米,底面直徑(橫截面的外圓直徑)為0.1米的圓柱形鋼管,你認(rèn)為采用(2)中的哪種方案在該集裝箱中裝運鋼管數(shù)最多?并求出一個這樣的集裝箱最多能裝運多少根鋼管?(≈1.73)
查看答案和解析>>
科目: 來源:2010年河南省初中學(xué)業(yè)水平暨高級中等學(xué)校招生考試數(shù)學(xué)試卷 題型:059
(1)操作發(fā)現(xiàn)
如圖,矩形ABCD中,E是AD的中點,將△ABE沿BE折疊后得到△GBE,且點G在舉行ABCD內(nèi)部.小明將BG延長交DC于點F,認(rèn)為GF=DF,你同意嗎?說明理由.
(2)問題解決
保持(1)中的條件不變,若DC=2DF,求的值;
(3)類比探求
保持(1)中條件不變,若DC=nDF,求的值.
查看答案和解析>>
科目: 來源:2010年河北省初中畢業(yè)生升學(xué)文化課考試數(shù)學(xué)試題 題型:059
如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=3,點M是BC的中點.點P從點M出發(fā)沿MB以每秒1個單位長的速度向點B勻速運動,到達點B后立刻以原速度沿BM返回;點Q從點M出發(fā)以每秒1個單位長的速度在射線MC上勻速運動.在點P,Q的運動過程中,以PQ為邊作等邊三角形EPQ,使它與梯形ABCD在射線BC的同側(cè).點P,Q同時出發(fā),當(dāng)點P返回到點M時停止運動,點Q也隨之停止.設(shè)點P,Q運動的時間是t秒(t>0).
(1)設(shè)PQ的長為y,在點P從點M向點B運動的過程中,寫出y與t之間的函數(shù)關(guān)系式(不必寫t的取值范圍).
(2)當(dāng)BP=1時,求△EPQ與梯形ABCD重疊部分的面積.
(3)隨著時間t的變化,線段AD會有一部分被△EPQ覆蓋,被覆蓋線段的長度在某個時刻會達到最大值,請回答:該最大值能否持續(xù)一個時段?若能,直接寫出t的取值范圍;若不能,請說明理由.
查看答案和解析>>
科目: 來源:2010年甘肅省蘭州市中考數(shù)學(xué)試卷 題型:059
如圖1,已知矩形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3;拋物線y=-x2+bx+c經(jīng)過坐標(biāo)原點O和x軸上另一點E(4,0)
(1)當(dāng)x取何值時,該拋物線的最大值是多少?
(2)將矩形ABCD以每秒1個單位長度的速度從圖1所示的位置沿x軸的正方向勻速平行移動,同時一動點P也以相同的速度從點A出發(fā)向B勻速移動.設(shè)它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖2所示).
①當(dāng)時,判斷點P是否在直線ME上,并說明理由;
②以P、N、C、D為頂點的多邊形面積是否可能為5,若有可能,求出此時N點的坐標(biāo);若無可能,請說明理由.
查看答案和解析>>
科目: 來源:2010年浙江省衢州初中畢業(yè)生學(xué)業(yè)考試數(shù)學(xué)試卷 題型:059
△ABC中,∠A=∠B=30°,AB=2.把△ABC放在平面直角坐標(biāo)系中,使AB的中點位于坐標(biāo)原點O(如圖),△ABC可以繞點O作任意角度的旋轉(zhuǎn).
(1)當(dāng)點B在第一象限,縱坐標(biāo)是時,求點B的橫坐標(biāo);
(2)如果拋物線y=ax2+bx+c(a≠0)的對稱軸經(jīng)過點C,請你探究:
①當(dāng)a=,b=-,c=-時,A,B兩點是否都在這條拋物線上?并說明理由;
②設(shè)b=-2am,是否存在這樣的m的值,使A,B兩點不可能同時在這條拋物線上?若存在,直接寫出m的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源:2010年浙江省金華市初中畢業(yè)生學(xué)業(yè)考試數(shù)學(xué)試卷 題型:059
如圖,把含有30°角的三角板ABO置入平面直角坐標(biāo)系中,A,B兩點坐標(biāo)分別為(3,0)和(0,3).動點P從A點開始沿折線AO-OB-BA運動,點P在AO,OB,BA上運動的面四民.?dāng)?shù)學(xué)興趣小組對捐款情況進行了抽樣調(diào)查,速度分別為1,,2(長度單位/秒).一直尺的上邊緣l從x軸的位置開始以(長度單位/秒)的速度向上平行移動(即移動過程中保持l∥x軸),且分別與OB,AB交于E,F兩點.設(shè)動點P與動直線l同時出發(fā),運動時間為t秒,當(dāng)點P沿折線AO-OB-BA運動一周時,直線l和動點P同時停止運動.
請解答下列問題:
(1)過A,B兩點的直線解析式是________;
(2)當(dāng)t﹦4時,點P的坐標(biāo)為________;當(dāng)t﹦________,點P與點E重合;
(3)①作點P關(guān)于直線EF的對稱點在運動過程中,若形成的四邊形PEF為菱形,則t的值是多少?
②當(dāng)t﹦2時,是否存在著點Q,使得△FEQ∽△BEP?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com