相關習題
 0  356004  356012  356018  356022  356028  356030  356034  356040  356042  356048  356054  356058  356060  356064  356070  356072  356078  356082  356084  356088  356090  356094  356096  356098  356099  356100  356102  356103  356104  356106  356108  356112  356114  356118  356120  356124  356130  356132  356138  356142  356144  356148  356154  356160  356162  356168  356172  356174  356180  356184  356190  356198  366461 

科目: 來源: 題型:

【題目】如圖,已知在⊙O中,AB= 4,AC是⊙O的直徑,AC⊥BD于F,∠A=30°.

⑴求圖中陰影部分的面積;

⑵若用陰影扇形OBD圍成一個圓錐側面,請求出這個圓錐底面圓的半徑.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.

(1)分別以直線ACBC為軸,把△ABC旋轉一周,得到兩個不同的圓錐,求這兩個圓錐的側面積;

(2)以直線AB為軸,把△ABC旋轉一周,求所得幾何體的表面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】小明打算用一張半圓形的紙(如圖)做一個圓錐.在制作過程中,他先將半圓剪成面積比為1∶2的兩個扇形.

(1)請你在圖中畫出他的裁剪痕跡(要求尺規(guī)作圖,不寫作法,保留作圖痕跡);

(2)若半圓半徑是3,小明用裁出的大扇形作為圓錐的側面,請你求出小明所做的圓錐的高.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知ABCD,∠1=∠2,∠3=∠4,則ADBE.完成下列推理過程:

證明:∵ABCD(已知)

∴∠4      

∵∠3=∠4(已知)

∴∠3      

∵∠1=∠2(已知)

∴∠CAE+∠1=∠CAE+∠2

即∠   =∠   

∴∠3   

ADBE   

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知斜坡AB長60米,坡角(即BAC)為30°,BCAC,現計劃在斜坡中點D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.(請將下面2小題的結果都精確到0.1米,參考數據).

1若修建的斜坡BE的坡角(即BAC)不大于45°,則平臺DE的長最多為 米;

2一座建筑物GH距離坡腳A點27米遠(即AG=27米),小明在D點測得建筑物頂部H的仰角(即HDM)為30°.點B、C、A、G、H在同一個平面上,點C、A、G在同一條直線上,且HGCG,問建筑物GH高為多少米?

查看答案和解析>>

科目: 來源: 題型:

【題目】太陽能光伏發(fā)電因其清潔、安全、便利、高效等特點,已成為世界各國普遍關注和重點發(fā)展的新興產業(yè),如圖是太陽能電池板支撐架的截面圖,其中的粗線表示支撐角鋼,太陽能電池板與支撐角鋼AB的長度相同,均為300cm,AB的傾斜角為,BE=CA=50cm,支撐角鋼CD,EF與底座地基臺面接觸點分別為D,F,CD垂直于地面,于點E.兩個底座地基高度相同即點D,F到地面的垂直距離相同,均為30cm,點A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長度各是多少cm結果保留根號

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,平行四邊形ABCD的周長為18cm,AE平分∠BAD,若CE1cm,則AB的長度是_____cm

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點P是正方形ABCD內部一點,且△PAB是正三角形,則∠CPD_____度.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,E,F,G,H分別是BD,BC,AC,AD的中點,且AB=CD,下列結論:①EG⊥FH;②四邊形EFGH是菱形;HF平分∠EHG;④EG=(BC﹣AD),其中正確的個數是( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目: 來源: 題型:

【題目】一張長方形桌子可坐6人,按圖3將桌子拼在一起.

12張桌子拼在一起可坐   人,4張桌子拼在一起可坐   人,n張桌子拼在一起可坐   人;

2)一家餐廳有40張這樣的長方形桌子,按照上圖的方式每5張拼成1張大桌子,則40張桌子可拼成8張大桌子,共可坐多少人?

查看答案和解析>>

同步練習冊答案