科目: 來源: 題型:
【題目】如圖,將一條數(shù)軸在原點O和點B處各折一下,得到一條“折線數(shù)軸”.圖中點A表示﹣10,點B表示10,點C表示18,我們稱點A和點C在數(shù)軸上相距28個長度單位.動點P從點A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運動,從點O運動到點B期間速度變?yōu)樵瓉淼囊话,之后立刻恢?fù)原速;同時,動點Q從點C出發(fā),以1單位/秒的速度沿著數(shù)軸的負方向運動,從點B運動到點O期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢?fù)原速.設(shè)運動的時間為t秒.問:
(1)動點P從點A運動至C點需要多少時間?
(2)P、Q兩點相遇時,求出相遇點M所對應(yīng)的數(shù)是多少;
(3)求當t為何值時,P、O兩點在數(shù)軸上相距的長度與Q、B兩點在數(shù)軸上相距的長度相等.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一個梯子AB長2.5米,頂端A靠在墻AC上,這時梯子下端B與墻角C距離為1.5米,梯子滑動后停在DE的位置上,測得BD長為0.5米,則梯子頂端A下落了( 。┟祝
A. 0.5 B. 1 C. 1.5 D. 2
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,的頂點在第一象限,點、的坐標分別為、,,,直線交軸于點,若與關(guān)于點成中心對稱,則點的坐標為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)a,b是任意兩個不等實數(shù),我們規(guī)定:滿足不等式a≤x≤b的實數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足:當m≤x≤n時,有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.如函數(shù)y=﹣x+4,當x=1時,y=3;當x=3時,y=1,即當1≤x≤3時,恒有1≤y≤3,所以說函數(shù)y=﹣x+4是閉區(qū)間[1,3]上的“閉函數(shù)”,同理函數(shù)y=x也是閉區(qū)間[1,3]上的“閉函數(shù)”.
(1)反比例函數(shù)y=是閉區(qū)間[1,2018]上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)如果已知二次函數(shù)y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數(shù)”,求k和t的值;
(3)如果(2)所述的二次函數(shù)的圖象交y軸于C點,A為此二次函數(shù)圖象的頂點,B為直線x=1上的一點,當△ABC為直角三角形時,寫出點B的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,矩形ABCD中,AB=4,AD=5,E為BC上一點,BE:CE=3:2,連接AE,點P從點A出發(fā),沿射線AB的方向以每秒1個單位長度的速度勻速運動,過點P作PF∥BC交直線AE于點F.
(1)線段AE= ;
(2)設(shè)點P的運動時間為t(s),EF的長度為y,求y關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)當t為何值時,以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時⊙F的半徑;
(4)如圖2,將△AEC沿直線AE翻折,得到△AEC',連結(jié)AC',如果∠ABF=∠CBC′,求t值.(直接寫出答案,不要求解答過程).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,上午9時,一條漁船從A出發(fā),以12海里/時的速度向正北航行,11時到達B處,從A、B處望小島C,測得∠NAC=15°,∠NBC=30°.若小島周圍12.3海里內(nèi)有暗礁,問該漁船繼續(xù)向正北航行有無觸礁危險?
查看答案和解析>>
科目: 來源: 題型:
【題目】在學習了數(shù)軸后,小亮決定對數(shù)軸進行變化應(yīng)用:
(1)應(yīng)用一:已知點在數(shù)軸上表示為-2,數(shù)軸上任意一點表示的數(shù)為,則兩點的距離可以表示為 ;應(yīng)用這個知識,請寫出當 時, 有最小值為 .
(2)應(yīng)用二:從數(shù)軸上取下一個單位長度的線段,第一次剪掉原長的,第二次剪掉剩下的,依此類推,每次都剪掉剩下的,則剪掉4次后剩下線段長度為 ;應(yīng)用這個原理,請計算:;
(3)應(yīng)用三:如圖,將一根拉直的細線看作數(shù)軸,一個三邊長分別為,,的三角形的頂點與原點重合,邊在數(shù)軸正半軸上,將數(shù)軸正半軸的線沿的順序依次纏繞在三角形的邊上,負半軸的線沿的順序依次纏繞在三角形的邊上.
①如果正半軸的線纏繞了3圈,負半軸的線纏繞了5圈,求繞在點上的所有數(shù)之和;
②如果正半軸的線不變,將負半軸的線拉長一倍,即原線上的點-2的位置對應(yīng)著拉長后的數(shù)-1,并將三角形向正半軸平移一個單位后再開始繞,求繞在點且絕對值不超過60的所有數(shù)之和.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列說法中不正確的是( )
A. 等邊三角形是軸對稱圖形
B. 若兩個圖形的對應(yīng)點連線都被同一條直線垂直平分,則這兩個圖形關(guān)于這條直線對稱
C. 若△ABC≌△ ,則這兩個三角形一定關(guān)于一條直線對稱
D. 直線MN是線段AB的垂直平分線,若P點使PA=PB,則點P在MN上,若,則不在MN上
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com