科目: 來源: 題型:
【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為18米,從D,E兩處測得路燈B的仰角分別為α和β,且tanα=6,tanβ=,求燈桿AB的長度.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,一張邊長為16cm的正方形硬紙板,把它的四個角都剪去一個邊長為xcm的小正方形,然后把它折成一個無蓋的長方體,設長方體的容積為Vcm3,請回答下列問題:
(1)用含有x的代數(shù)式表示V,則V=______;
(2)完成下表:
x(cm) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
V(cm2) |
(3)觀察上表,容積V的值是否隨x的增大而增大?當x取什么值時,容積V的值最大?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,∠E=∠F=90°,∠B=∠C,AE=AF,結(jié)論:①EM=FN;②AF
∥EB;③∠FAN=∠EAM;④△ACN≌△ABM其中正確的有 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=8cm,BC=10cm,折疊矩形的一邊AD,使點D落在BC邊上的點F處,折痕為AE.以點A為原點,分別以AD所在的直線為x軸,AB所在的直線為y軸建立坐標系.
(1)寫出點B、D、E、F的坐標;
(2)在坐標軸上是否存在點G,使△AFG是以AF為腰長的等腰三角形?若存在,請求出點G的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直角坐標系中,△ABC的頂點都在網(wǎng)格點上,其中C點坐標為(1,2).
(1)寫出點A,B的坐標:A( )、B( );
(2)判斷△ABC的形狀 ;計算△ABC的面積是 .
(3)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到,則的三個頂點坐標分別是( ),( ),( ).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=3,點E在CD邊上,且CE=2DE,將△ADE沿直線AE對折至△AEF,延長EF交BC于G,連接AG,則線段AG的長為______.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了掌握八年級數(shù)學考試卷的命題質(zhì)量與難度系數(shù),命題組教師赴外地選取一個水平相當?shù)陌四昙壈嗉夁M行預測,將考試成績分布情況進行處理分析,制成頻數(shù)分布表如下(成績得分均為整數(shù)):
組別 | 成績分組 | 頻數(shù) | 頻率 |
1 | 47.5~59.5 | 2 | 0.05 |
2 | 59.5~71.5 | 4 | 0.10 |
3 | 71.5~83.5 | a | 0.2 |
4 | 83.5~95.5 | 10 | 0.25 |
5 | 95.5~107.5 | b | c |
6 | 107.5~120 | 6 | 0.15 |
合計 | 40 | 1.00 |
根據(jù)表中提供的信息解答下列問題:
(1)頻數(shù)分布表中的a=__________,b=__________,c=__________;
(2)已知全區(qū)八年級共有200個班(平均每班40人),用這份試卷檢測,102018年四川省內(nèi)江市及以上為優(yōu)秀,預計優(yōu)秀的人數(shù)約為__________,72分及以上為及格,預計及格的人數(shù)約為__________,及格的百分比約為__________;
(3)補充完整頻數(shù)分布直方圖.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了保護環(huán)境,某化工廠一期工程完成后購買了3臺甲型和2臺乙型污水處理設備,共花費資金54萬元,且每臺乙型設備的價格是每臺甲型設備價格的75%.
(1)請你計算每臺甲型設備和每臺乙型設備的價格各是多少元?
(2)今年該廠二期工程即將完成,產(chǎn)生的污水將大大增加,于是該廠決定再購買甲、乙兩種型號設備共8臺用于二期工程的污水處理,預算本次購買資金不超過84萬元;實際運行中發(fā)現(xiàn),每臺甲型設備每月能處理污水200噸,每臺乙型設備每月能處理污水160噸,預計二期工程完成后每月將產(chǎn)生不少于1300噸污水,請你求出用于二期工程的污水處理設備的所有購買方案.
(3)經(jīng)測算:每年用于每臺甲型設備的各種維護費和電費為1萬元,每年用于每臺乙型設備的各種維護費和電費為1.5萬元.在(2)中的方案中,哪種購買方案使得設備的各種維護費和電費總費用最低?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx﹣3與x軸交于點A(﹣3,0)和點B(1,0),交y軸于點C,過點C作CD∥x軸,交拋物線于點D.
(1)求拋物線的解析式;
(2)若直線y=m(﹣3<m<0)與線段AD、BD分別交于G、H兩點,過G點作EG⊥x軸于點E,過點H作HF⊥x軸于點F,求矩形GEFH的最大面積;
(3)若直線y=kx+1將四邊形ABCD分成左、右兩個部分,面積分別為S1,S2,且S1:S2=4:5,求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com