科目: 來源: 題型:
【題目】利用如圖1的二維碼可以進(jìn)行身份識別.某校建立了一個(gè)身份識別系統(tǒng),圖2是某個(gè)學(xué)生的識別圖案,黑色小正方形表示1,白色小正方形表示0,將第一行數(shù)字從左到右依次記為,那么可以轉(zhuǎn)換為該生所在班級序號,其序號為(注:),如圖2第一行數(shù)字從左到右依次為0,1,0,1,序號為,表示該生為5班學(xué)生,那么表示7班學(xué)生的識別圖案是( )
A.B.
C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①,在矩形 ABCD 中,動(dòng)點(diǎn) E 從點(diǎn) A 出發(fā),沿 AB→BC 方向運(yùn)動(dòng),當(dāng)點(diǎn) E 到達(dá)點(diǎn) C 時(shí) 停止運(yùn)動(dòng).過點(diǎn) E 作 FE⊥AE,交 CD 于 F 點(diǎn),設(shè)點(diǎn) E 運(yùn)動(dòng)路程為 x,FC=y,圖②表示 y與 x 的函數(shù)關(guān)系的大致圖像,則矩形 ABCD 的面積是( )
A. B. 5 C. 6 D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,邊形為菱形,點(diǎn)為對角線上的一個(gè)動(dòng)點(diǎn),連接并延長交于點(diǎn),連接.
(1)如圖1,求證:;
(2)如圖2,若,且,求的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,對稱軸為直線x=1的拋物線y=x2+bx+c,與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),且點(diǎn)A坐標(biāo)為(-1,0).又P是拋物線上位于第一象限的點(diǎn),直線AP與y軸交于點(diǎn)D,與拋物線對稱軸交于點(diǎn)E,點(diǎn)C與坐標(biāo)原點(diǎn)O關(guān)于該對稱軸成軸對稱.
(1)求點(diǎn) B 的坐標(biāo)和拋物線的表達(dá)式;
(2)當(dāng) AE:EP=1:4 時(shí),求點(diǎn) E 的坐標(biāo);
(3)如圖 2,在(2)的條件下,將線段 OC 繞點(diǎn) O 逆時(shí)針旋轉(zhuǎn)得到 OC ′,旋轉(zhuǎn)角為 α(0°<α<90°),連接 C ′D、C′B,求 C ′B+ C′D 的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,將沿過點(diǎn)的直線折疊,使點(diǎn)落到邊上的處,折痕交邊于點(diǎn),連接.
(1)求證:四邊形是平行四邊形;
(2)若平分,求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點(diǎn)A(1,a),將線段OA平移至線段BC,B(b,0),a是m+6n的算術(shù)平方根,=3,n=,且m<n,正數(shù)b滿足(b+1)2=16.
(1)直接寫出A、B兩點(diǎn)坐標(biāo)為:A ,B ;
(2)如圖1,連接AB、OC,求四邊形AOCB的面積;
(3)如圖2,若∠AOB=a,點(diǎn)P為y軸正半軸上一動(dòng)點(diǎn),試探究∠CPO與∠BCP之間的數(shù)量關(guān)系.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn)A,B,C,D在同一條直線上,點(diǎn)E,F分別在直線AD的兩側(cè),且AE=DF,∠A=∠D,AB=DC.
(1)求證:四邊形BFCE是平行四邊形;
(2)若AD=10,DC=3,∠EBD=60°,則BE= 時(shí),四邊形BFCE是菱形.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,如圖AB∥CD,∠B=80°,∠BCE=20°,∠CEF=80°,請判斷AB與EF的位置關(guān)系,并說明理由.
解:理由如下:
∵AB∥CD
∴∠B=∠BCD .
∵∠B=80°,
∴∠BCD=80° .
∵∠BCE=20°,
∴∠ECD=100°,
又∵∠CEF=80°
∴ + =180°,
∴EF∥
又∵AB∥CD,
∴AB∥EF .
查看答案和解析>>
科目: 來源: 題型:
【題目】【操作發(fā)現(xiàn)】如圖 1,△ABC 為等邊三角形,點(diǎn) D 為 AB 邊上的一點(diǎn),∠DCE=30°,將線段 CD 繞點(diǎn) C 順時(shí)針旋轉(zhuǎn) 60°得到線段 CF,連接 AF、EF. 請直接 寫出下列結(jié)果:
① ∠EAF的度數(shù)為__________;
② DE與EF之間的數(shù)量關(guān)系為__________;
【類比探究】如圖 2,△ABC 為等腰直角三角形,∠ACB=90°,點(diǎn) D 為 AB 邊上的一點(diǎn)∠DCE=45°,將線段 CD 繞點(diǎn) C 順時(shí)針旋轉(zhuǎn) 90°得到線段 CF,連接 AF、EF.
①則∠EAF的度數(shù)為__________;
② 線段 AE,ED,DB 之間有什么數(shù)量關(guān)系?請說明理由;
【實(shí)際應(yīng)用】如圖 3,△ABC 是一個(gè)三角形的余料.小張同學(xué)量得∠ACB=120°,AC=BC, 他在邊 BC 上取了 D、E 兩點(diǎn),并量得∠BCD=15°、∠DCE=60°,這樣 CD、CE 將△
ABC 分成三個(gè)小三角形,請求△BCD、△DCE、△ACE 這三個(gè)三角形的面積之比.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形OABC的邊長為6,點(diǎn)A、C分別在x軸,y軸的正半軸上,點(diǎn)D(2,0)在OA上,P是OB上一動(dòng)點(diǎn),則PA+PD的最小值為__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com