科目: 來源: 題型:
【題目】如果一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)偶數(shù)的平方差,那么稱這個(gè)正整數(shù)為“奇巧數(shù)”,如,,,,因此,,都是奇巧數(shù).
(1),是奇巧數(shù)嗎?為什么?
(2)設(shè)兩個(gè)連續(xù)偶數(shù)為,(其中為正整數(shù)),由這兩個(gè)連續(xù)偶數(shù)構(gòu)造的奇巧數(shù)是4的倍數(shù)嗎?為什么?
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)填寫下表,觀察被開方數(shù)的小數(shù)點(diǎn)與算術(shù)平方根的小數(shù)點(diǎn)的移動(dòng)規(guī)律:
0.0016 | 0.16 | 16 | 1600 | |
0.04 | 0.4 |
(2)根據(jù)你發(fā)現(xiàn)的規(guī)律填空:
①已知,則 .
②已知,,則是的 倍.
查看答案和解析>>
科目: 來源: 題型:
【題目】直線y=x﹣2與兩坐標(biāo)軸分別交于點(diǎn)A,C,交y=(x>0)于點(diǎn)P,PQ⊥x軸于點(diǎn)Q,CQ=1.
(1)求反比例函數(shù)解析式;
(2)平行于y軸的直線x=m分別交y=x﹣2,y=(x>0)于點(diǎn)D,B(B在線段AP上方),若S△BOD=2,求m值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線y=kx+2與x軸,y軸分別交于點(diǎn)A(﹣1,0)和點(diǎn)B,與反比例函數(shù)y=的圖象在第一象限內(nèi)交于點(diǎn)C(1,n).
(1)求一次函數(shù)y=kx+2與反比例函數(shù)y=的表達(dá)式;
(2)過x軸上的點(diǎn)D(a,0)作平行于y軸的直線l(a>1),分別與直線y=kx+2和雙曲線y=交于P、Q兩點(diǎn),且PQ=2QD,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,面積為4的正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,邊OA、OC分別在x軸、y軸的正半軸上,點(diǎn)B、P都在函數(shù)y=(x>0)的圖象上,過動(dòng)點(diǎn)P分別作軸x、y軸的平行線,交y軸、x軸于點(diǎn)D、E.設(shè)矩形PDOE與正方形OABC重疊部分圖形的面積為S,點(diǎn)P的橫坐標(biāo)為m.
(1)求k的值;
(2)用含m的代數(shù)式表示CD的長;
(3)求S與m之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列從左邊到右邊的變形,是因式分解的是( 。
A.y﹣5y﹣6=(y﹣6)(y+1)B.a+4a﹣3=a(a+4)﹣3
C.x(x﹣1)=x﹣xD.m+n=(m+n)(m﹣n)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知直線y=k1x+b與x軸、y軸相交于P、Q兩點(diǎn),與y=的圖象相交于A(﹣2,m)、B(1,n)兩點(diǎn),連接OA、OB,給出下列結(jié)論:①k1k2<0;②m+n=0;③S△AOP=S△BOQ;④不等式k1x+b>的解集是x<﹣2或0<x<1,其中正確的結(jié)論的序號(hào)是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】問題:(1)如圖①,在Rt△ABC中,AB=AC,D為BC邊上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,則線段BC,DC,EC之間滿足的等量關(guān)系式為 ;
探索:(2)如圖②,在Rt△ABC與Rt△ADE中,AB=AC,AD=AE,將△ADE繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)D落在BC邊上,試探索線段AD,BD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論;
應(yīng)用:(3)如圖③,在四邊形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知一次函數(shù)y=﹣x+b與反比例函數(shù)y=(k≠0)的圖象相交于點(diǎn)P,則關(guān)于x的方程﹣x+b=的解是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在四邊形ABCD中,AB=AD,∠B+∠ADC=180°,點(diǎn)E,F分別在四邊形ABCD的邊BC,CD上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系.
(1)思路梳理
將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至△ADG,使AB與AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即點(diǎn)F,D,G三點(diǎn)共線,易證△AFG≌△AFE,故EF,BE,DF之間的數(shù)量關(guān)系為__;
(2)類比引申
如圖2,在圖1的條件下,若點(diǎn)E,F由原來的位置分別變到四邊形ABCD的邊CB,DC延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D,E均在邊BC上,且∠DAE=45°,若BD=1,EC=2,直接寫出DE的長為________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com