相關(guān)習(xí)題
 0  360378  360386  360392  360396  360402  360404  360408  360414  360416  360422  360428  360432  360434  360438  360444  360446  360452  360456  360458  360462  360464  360468  360470  360472  360473  360474  360476  360477  360478  360480  360482  360486  360488  360492  360494  360498  360504  360506  360512  360516  360518  360522  360528  360534  360536  360542  360546  360548  360554  360558  360564  360572  366461 

科目: 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知直線y=-x+4與y軸交于A點,與x軸交于B點,C點坐標(biāo)為(﹣2,0).

(1)求經(jīng)過A,B,C三點的拋物線的解析式;

(2)如果M為拋物線的頂點,聯(lián)結(jié)AM、BM,求四邊形AOBM的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,在下列代數(shù)式中(1)a+b+c>0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0; 其中正確的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,將此平行四邊形繞點O順時針旋轉(zhuǎn)90°得到平行四邊形ABOC.拋物線y=﹣x2+2x+3經(jīng)過點A、C、A三點.

1)求A、A、C三點的坐標(biāo);

2)求平行四邊形ABOC和平行四邊形ABOC重疊部分COD的面積;

3)點M是第一象限內(nèi)拋物線上的一動點,問點M在何處時,AMA的面積最大?最大面積是多少?并寫出此時M的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點P與點C重合,點Q、E、F分別在BC、AB、AC上(點E與點A、點B均不重合).

(1)當(dāng)AE=8時,求EF的長;

(2)設(shè)AEx,矩形EFPQ的面積為y

yx的函數(shù)關(guān)系式;

當(dāng)x為何值時,y有最大值,最大值是多少?

(3)當(dāng)矩形EFPQ的面積最大時,將矩形EFPQ以每秒1個單位的速度沿射線CB勻速向右運動(當(dāng)點P到達(dá)點B時停止運動),設(shè)運動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求St的函數(shù)關(guān)系式,并寫出t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖是由邊長為1的小正方形組成的8×4網(wǎng)格,每個小正方形的頂點叫做格點,點A,B,C,D均在格點上,在網(wǎng)格中將點D按下列步驟移動:

第一步:點D繞點A順時針旋轉(zhuǎn)180°得到點D1;

第二步:點D1繞點B順時針旋轉(zhuǎn)90°得到點D2;

第三步:點D2繞點C順時針旋轉(zhuǎn)90°回到點D.

(1)請用圓規(guī)畫出點D→D1→D2→D經(jīng)過的路徑;

(2)所畫圖形是什么對稱圖形;

(3)求所畫圖形的周長(結(jié)果保留π).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,點OAPB的平分線上,OPA相切于點C

1)求證:直線PBO相切;

2PO的延長線與O交于點E.若O的半徑為3,PC=4.求弦CE的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】下面是“作出弧AB所在的圓”的尺規(guī)作圖過程.

已知:弧AB.

求作:弧AB所在的圓.

作法:如圖,

(1)在弧AB上任取三個點D,C,E;

(2)連接DC,EC;

(3)分別作DC和EC的垂直平分線,兩垂直平分線的交點為點O.

(4)以 O為圓心,OC長為半徑作圓,所以O即為所求作的弧AB所在的圓.

請回答:該尺規(guī)作圖的依據(jù)是_____

查看答案和解析>>

科目: 來源: 題型:

【題目】結(jié)果如此巧合!

下面是小穎對一道題目的解答.

題目:如圖,RtABC的內(nèi)切圓與斜邊AB相切于點D,AD=3,BD=4,求△ABC的面積.

解:設(shè)△ABC的內(nèi)切圓分別與AC、BC相切于點E、F,CE的長為x.

根據(jù)切線長定理,得AE=AD=3,BF=BD=4,CF=CE=x.

根據(jù)勾股定理,得(x+3)2+(x+4)2=(3+4)2

整理,得x2+7x=12.

所以SABC=ACBC

=(x+3)(x+4)

=(x2+7x+12)

=×(12+12)

=12.

小穎發(fā)現(xiàn)12恰好就是3×4,即△ABC的面積等于ADBD的積.這僅僅是巧合嗎?

請你幫她完成下面的探索.

已知:△ABC的內(nèi)切圓與AB相切于點D,AD=m,BD=n.

可以一般化嗎?

(1)若∠C=90°,求證:△ABC的面積等于mn.

倒過來思考呢?

(2)若ACBC=2mn,求證∠C=90°.

改變一下條件……

(3)若∠C=60°,用m、n表示△ABC的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m,橋洞與水面

的最大距離是5m

1經(jīng)過討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案如下圖

你選擇的方案是_____填方案一方案二,或方案三),B點坐標(biāo)是______,求出你所選方案中的拋物線的表達(dá)式;

2因為上游水庫泄洪,水面寬度變?yōu)?/span>6m,求水面上漲的高度

查看答案和解析>>

科目: 來源: 題型:

【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍(lán)球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為

(1)求口袋中黃球的個數(shù);

(2)甲同學(xué)先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,

求兩次摸 出都是紅球的概率;

查看答案和解析>>

同步練習(xí)冊答案