相關習題
 0  361348  361356  361362  361366  361372  361374  361378  361384  361386  361392  361398  361402  361404  361408  361414  361416  361422  361426  361428  361432  361434  361438  361440  361442  361443  361444  361446  361447  361448  361450  361452  361456  361458  361462  361464  361468  361474  361476  361482  361486  361488  361492  361498  361504  361506  361512  361516  361518  361524  361528  361534  361542  366461 

科目: 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABOC的頂點O在坐標原點,邊BOx軸的負半軸上,,頂點C的坐標為x反比例函數(shù)的圖象與菱形對角線AO交于點D,連接BD,當軸時,k的值是______

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,點E為矩形ABCDAD上一點,點P,點Q同時從點B出發(fā),點P沿運動到點C停止,點Q沿BC運動到點C停止,它們的運動速度都是,設PQ出發(fā)t秒時,的面積為,已知yt的函數(shù)關系的圖象如圖曲線OM為拋物線的一部分,則下列結論:;直線NH的解析式為不可能與相似;時,秒.其中正確的結論個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,O中,ABAC,∠ACB75°,BC1,則陰影部分的面積是( 。

A.1+πB.πC.πD.1+π

查看答案和解析>>

科目: 來源: 題型:

【題目】定義:點PABC內部或邊上的點(頂點除外),在PAB,PBC,PCA中,若至少有一個三角形與ABC相似,則稱點PABC的自相似點.

例如:圖1,PABC的內部,PBC=A,PCB=ABCBCP∽△ABC,故PABC的自相似點.

請你運用所學知識,結合上述材料,解決下列問題:

在平面直角坐標系中,M曲線C上的任意一點,點Nx軸正半軸上的任意一點.

(1) 如圖2,點P是OM上一點,ONP=M, 試說明點P是MON的自相似點; M的坐標是,N的坐標是時,求點P 的坐標;

(2) 如圖3,當M的坐標是N的坐標是時,求MON的自相似點的坐標;

(3) 是否存在點M和點N,使MON無自相似點,?若存在,請直接寫出這兩點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】小明研究了這樣一道幾何題:如圖1,在中,把繞點順時針旋轉得到,把繞點逆時針旋轉得到,連接.當時,請問上的中線的數(shù)量關系是什么?以下是他的研究過程:

特例驗證:(1)①如圖2,當為等邊三角形時,猜想的數(shù)量關系為_______;②如圖3,當,時,則長為________

猜想論證:(2)在圖1中,當為任意三角形時,猜想的數(shù)量關系,并給予證明.

拓展應用:(3)如圖4,在四邊形,,,,,在四邊形內部是否存在點,使之間滿足小明探究的問題中的邊角關系?若存在,請畫出點的位置(保留作圖痕跡,不需要說明)并直接寫出的邊上的中線的長度;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線(mn 為常數(shù))

1)若拋物線的的對稱軸為直線 x=1,且經(jīng)過點(0,-1),求 mn 的值;

2)若拋物線上始終存在不重合的兩點關于原點對稱,求 n 的取值范圍;

3)在(1)的條件下,存在正實數(shù) a,b( ab),當 axb 時,恰好有,請直接寫出 a,b 的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】閱讀下面的材料:

如果函數(shù) yfx)滿足:對于自變量 x 的取值范圍內的任意 x1x2,

1)若 x1x2,都有 fx1)<fx2),則稱 fx)是增函數(shù);

2)若 x1x2,都有 fx1)>fx2),則稱 fx)是減函數(shù).

例題:證明函數(shù)fx)= x0)是減函數(shù).

證明:設 0x1x2,

fx1)﹣fx2)=

0x1x2

x2x10,x1x20

0.即 fx1)﹣fx2)>0

fx1)>fx2).

∴函數(shù) fx= x0)是減函數(shù).

根據(jù)以上材料,解答下面的問題:

已知函數(shù)

f(﹣1)= +(﹣2)=-1,f(﹣2)= +(﹣4)=

1)計算:f(﹣3)= ,f(﹣4)= ;

2)猜想:函數(shù) 函數(shù)(填“增”或“減”);

3)請仿照例題證明你的猜想.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,菱形ABCD中,對角線AC、BD交于O點,DE∥AC,CE∥BD

1)求證:四邊形OCED為矩形;

2)在BC上截取CFCO,連接OF,若AC16BD12,求四邊形OFCD的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,反比例函數(shù) 的圖象與正比例函數(shù) 的圖象相交于(1,),兩點,點在第四象限, 軸,.

(1)的值及點的坐標;

(2)的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】閱讀以下材料,并按要求完成相應的任務:

萊昂哈德·歐拉(Leonhard Euler)是瑞士數(shù)學家,在數(shù)學上經(jīng)常見到以他的名字命名的重要常數(shù)、公式和定理,下面是歐拉發(fā)現(xiàn)的一個定理:在ABC 中,R r 分別為外接圓和內切圓的半徑,O I 分別為其外心和內心,則OI R2Rr .

下面是該定理的證明過程(借助了第(2)問的結論):

延長AI 交⊙O 于點 D,過點 I 作⊙O 的直徑 MN,連接 DM,AN.

∵∠D=N,∴∠DMI=NAI(同弧所對的圓周角相等),

∴△MDI∽△ANI.,∴ IA ID IM IN

如圖②,在圖 1(隱去 MDAN)的基礎上作⊙O 的直徑DE,連接BEBD,BI,IF

DE 是⊙O 的直徑,∴∠DBE=90°.

∵⊙I AB 相切于點 F,∴∠AFI=90°,

∴∠DBE=IFA.

∵∠BAD=E(同弧所對圓周角相等),

∴△AIF∽△EDB

,∴②,

由(2)知:,

又∵

2Rr(R d )(R d ) ,

R d 2Rr

d R 2Rr

任務:(1)觀察發(fā)現(xiàn): IM R d , IN (用含Rd 的代數(shù)式表示);

2)請判斷 BD ID 的數(shù)量關系,并說明理由.(請利用圖 1 證明)

3)應用:若ABC 的外接圓的半徑為 6cm,內切圓的半徑為 2cm,則ABC 的外心與內心之間的距離為   cm

查看答案和解析>>

同步練習冊答案