科目: 來源: 題型:
【題目】某市水產(chǎn)養(yǎng)殖戶進行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,銷售單價p(元/千克)與時間第t(天)之間的函數(shù)關(guān)系為:,日銷售量y(千克)與時間第t(天)之間的函數(shù)關(guān)系如圖所示:
(1)求日銷售量y與時間t的函數(shù)關(guān)系式?
(2)哪一天的日銷售利潤最大?最大利潤是多少?
(3)該養(yǎng)殖戶有多少天日銷售利潤不低于2400元?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:AB為⊙O的直徑,延長AB到點P,過點P作圓O的切線,切點為C,連接AC,且AC=CP.
(1)求∠P的度數(shù);
(2)若點D是弧AB的中點,連接CD交AB于點E,且DE·DC=20,求⊙O的面積.(π取3.14)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知A(n,﹣2),B(1,4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象的兩個交點,直線AB與y軸交于點C.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).
(1)求證無論k為何值,方程總有兩個不相等實數(shù)根;
(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過第三象限,求k的取值范圍;
(3)若原方程的一個根大于3,另一個根小于3,求k的最大整數(shù)值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)y=﹣x2+bx+c的圖象與y軸交于點A(0,8),與x軸交于B、C兩點,其中點C的坐標為(4,0).點P(m,n)為該二次函數(shù)在第二象限內(nèi)圖象上的動點,點D的坐標為(0,4),連接BD.
(1)求該二次函數(shù)的表達式及點B的坐標;
(2)連接OP,過點P作PQ⊥x軸于點Q,當以O、P、Q為頂點的三角形與△OBD相似時,求m的值;
(3)連接BP,以BD、BP為鄰邊作BDEP,直線PE交x軸于點T.當點E落在該二次函數(shù)圖象上時,求點E的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】(閱讀材料)
小明遇到這樣一個問題:如圖1,點P在等邊三角形ABC內(nèi),且∠APC=150°,PA=3,PC=4,求PB的長.
小明發(fā)現(xiàn),以AP為邊作等邊三角形APD,連接BD,得到△ABD;由等邊三角形的性質(zhì),可證△ACP≌△ABD,得PC=BD;由已知∠APC=150°,可知∠PDB的大小,進而可求得PB的長.
(1)請回答:在圖1中,∠PDB= °,PB= .
(問題解決)
(2)參考小明思考問題的方法,解決下面問題:
如圖2,△ABC中,∠ACB=90°,AC=BC,點P在△ABC內(nèi),且PA=1,PB=,PC=,求AB的長.
(靈活運用)
(3)如圖3,在Rt△ABC中,∠ACB=90°,∠BAC=α,且tanα=,點P在△ABC外,且PB=3,PC=1,直接寫出PA長的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,OA、OB是⊙O的兩條半徑,OA⊥OB,C是半徑OB上一動點,連接AC并延長交⊙O于D,過點D作圓的切線交OB的延長線于E,已知OA=6.
(1)求證:∠ECD=∠EDC;
(2)若BC=2OC,求DE長;
(3)當∠A從15°增大到30°的過程中,求弦AD在圓內(nèi)掃過的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組為測量一棵古樹BH和教學(xué)樓CG的高,先在A處用高1.5米的測角儀測得古樹頂端H的仰角∠HDE為37°,此時教學(xué)樓頂端G恰好在視線DH上,再向前走8米到達B處,又測得教學(xué)樓頂端G的仰角∠GEF為45°,點A、B、C三點在同一水平線上.
(1)求古樹BH的高;
(2)計算教學(xué)樓CG的高度.
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目: 來源: 題型:
【題目】某校為了了解學(xué)生的安全意識,在全校范圍內(nèi)隨機抽取部分學(xué)生進行問卷調(diào)查.根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識分成“淡薄”、“一般”、“較強”、“很強”四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)這次調(diào)查一共抽取了 名學(xué)生,將條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中,“較強”層次所占圓心角的大小為 °;
(3)若該校有1800名學(xué)生,現(xiàn)要對安全意識為“淡薄”、“一般”的學(xué)生強化安全教育,根據(jù)調(diào)查結(jié)果,請你估計全校需要強化安全教育的學(xué)生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com